Subgraph extraction
子图提取包括两个步骤:首先,根据节点与代表目标实体的给定种子集的接近程度对节点进行评分。其次,按照节点得分的降序来考虑节点,以创建嵌套的局部聚类,然后使用goodness metric.良度度量对其进行评估。
PPR,又称random-walk-with-restart,是衡量节点重要性最常用的评分方法之一[43-45]。我们使用近似PPR来克服PPR计算成本高的问题[43]。如算法1所示,我们根据种子集 = {u, v}对图G的顶点进行排序。近似参数β保持两个向量:解向量p和残差向量r,其中p向量是PPR向量的近似值,向量r包含近似误差。隐形传态概率α控制着我们从种子集的邻域吸收的信息量。也就是说,当α值接近1时,随机游走更频繁地传送到