Locality-aware subgraphs for inductive link prediction in knowledgegraphs

Subgraph extraction

子图提取包括两个步骤:首先,根据节点与代表目标实体的给定种子集的接近程度对节点进行评分。其次,按照节点得分的降序来考虑节点,以创建嵌套的局部聚类,然后使用goodness metric.良度度量对其进行评估。

 

PPR,又称random-walk-with-restart,是衡量节点重要性最常用的评分方法之一[43-45]。我们使用近似PPR来克服PPR计算成本高的问题[43]。如算法1所示,我们根据种子集 = {u, v}对图G的顶点进行排序。近似参数β保持两个向量:解向量p和残差向量r,其中p向量是PPR向量的近似值,向量r包含近似误差。隐形传态概率α控制着我们从种子集的邻域吸收的信息量。也就是说,当α值接近1时,随机游走更频繁地传送到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值