视觉SLAM十四讲笔记

基础知识:

《视觉SLAM涉及数学理论最全总结》 - 知乎 (zhihu.com)

正交变换和正交矩阵 原文链接:https://blog.csdn.net/MoreAction_/article/details/105442932

正交变换

在各种变换中,有一种变换拥有良好的特性——它能使变换后的向量长度,向量之间的内积、距离、夹角等很多性质都不变,这种变换,我们称为正交变换,用于实施这种变换的矩阵,我们称为正交矩阵,这种变换的特性,我们称为正交变换的不变性。

假如有m个向量,我们把向量都看作点,那么这m点就会构成一个具有一定几何结构的空间(图形),我们对这m个点进行正交变换,其结果直观来说就是,正交变换不会对图形进行拉伸、压缩,它能够使变换后的图形保持原来图形的几何形状,如下图所示,ABC构成的空间正交变换到A’B’C’,其大小和形状都不会改变

向量

欧式变换

 四元数干货 | 欧拉角,四元数?晕头转向的空间姿态表示法(下篇) - 古月居 (guyuehome.com)

 矩阵的秩

3.矩阵的秩

  • 「秩」是图像经过矩阵变换之后的空间维度
  • 「秩」是列空间的维度

 雅克比Jacobian 矩阵

函数的一阶偏导数以一定方式排列成的矩阵。W当一个函数的输入和输出都是向量的函数,把它所有的偏导数放入一个矩阵,把包含所有这样偏导数的矩阵称为Jacobian 矩阵。

 Hessian矩阵等价于 梯度 的Jacobian矩阵

 协方差的理解_tim514的博客-CSDN博客

协方差(Covariance)是统计学中用来衡量两个随机变量之间关系的一种度量。它描述了这两个变量在同一时刻的变化趋势是否相似。具体而言,协方差表示的是两个随机变量的变化偏离其各自期望值的程度以及这种偏离是如何相互关联的。

如果两个随机变量在同一时刻的变化趋势相似(即一个变大时另一个也变大,或一个变小时另一个也变小),则它们的协方差为正数;如果一个变量变大而另一个变量变小,或者反之,它们的协方差为负数;如果它们的变化趋势不呈现明显的关系,协方差接近于零。

协方差的计算公式如下:

 

其中,$X$ 和 $Y$ 是两个随机变量的值,$x_i$ 和 $y_i$ 是相应的样本值,$\bar{x}$ 和 $\bar{y}$ 分别是 $X$ 和 $Y$ 的均值,$n$ 是样本数量。

需要注意的是,协方差的值本身没有标准化,因此不容易直接用于比较不同数据集之间的关系强度。为了度量两个变量之间的关系强度,通常使用相关系数(Pearson相关系数)来代替协方差。相关系数在协方差的基础上进行标准化,取值范围在 -1 到 1 之间,更直观地表示两个变量之间的线性相关性程度。

后验-先验-似然估计-贝叶斯公式-机器学习之朴素贝叶斯算法_后验算法_First Snowflakes的博客-CSDN博客

SLAM算法工程师之路:聊聊SLAM中的概率与数学模型 - 知乎 (zhihu.com)

这两个方程描述了最基本的SLAM 问题:当知道
运动测量的读数u,以及传感器的读数z 时,如何求解定位问题(估计x)和建图问题(估计y)?
这时,我们就把SLAM 问题建模成了一个状态估计问题:如何通过带有噪声的测量数据,估计内部
的、隐藏着的状态变量?

状态估计问题的求解,与两个方程的具体形式,以及噪声服从哪种分布有关。按照运动和观测方
程是否为线性,噪声是否服从高斯分布进行分类,分为线性/非线性和高斯/非高斯系统。其中线性高斯系统(Linear Gaussian,LG 系统)是最简单的,它的无偏的最优估计可以由卡尔曼滤波器(KalmanFilter,KF)给出。而在复杂的非线性非高斯系统(Non-Linear Non-Gaussian,NLNG 系统)中,我们会使用以扩展卡尔曼滤波器(Extended Kalman Filter,EKF)和非线性优化两大类方法去求解。直至21 世纪早期,以EKF 为主的滤波器方法在SLAM 中占据了主导地位。我们会在工作点处把系统线性化,并以预测—更新两大步骤进行求解(见第10 讲)。最早的实时视觉SLAM 系统即是基于EKF[2] 开发的。随后,为了克服EKF 的缺点(例如线性化误差和噪声高斯分布假设),人们开始使用粒子滤波器(Particle Filter)等其他滤波器,乃至使用非线性优化的方法。时至今日,主流视觉SLAM 使用以图优化(Graph Optimization)为代表的优化技术进行状态估计[13]。我们认为优化技术已经明显优于滤波器技术,只要计算资源允许,通常都偏向于使用优化方法(见第10 讲和第11 讲)。

 任意旋转矩阵R满足RR^{T}=I

两个正交向量内积为0

外积,点乘又叫叉乘

旋转矩阵

   

旋转矩阵是行列式为1的正交矩阵,任何行列式为1的正交矩阵也是一个旋转矩阵.所有旋转矩阵构成特殊正交群S O SOSO:
S O ( n ) = { R ∈ R n × n ∣ R R T = I , det ⁡ ( R ) = 1 } SO(n) = \{ R \in \mathbb{R}^{n \times n} | RR^T = I, \det(R)=1 \}
SO(n)={R∈R 
n×n
 ∣RR 
T
 =I,det(R)=1}
————————————————
版权声明:本文为CSDN博主「ncepu_Chen」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/ncepu_Chen/article/details/105322585

齐次坐标

这是一个数学技巧:我们在一个三维向量的末尾添加1,将其变成了四维向量,称为齐次坐标。
对于这个四维向量,我们可以把旋转和平移写在一个矩阵里面,使得整个关系变成线性关系。该式
中,矩阵T 称为变换矩阵(Transform Matrix)。

矩阵的特征值和特征向量

在线性代数中,矩阵的特征值和特征向量是重要的概念,用于描述矩阵的性质和变换。特征值和特征向量的概念在旋转矩阵和旋转轴的讨论中也有应用。

特征值(Eigenvalues): 给定一个 n × n 矩阵 A,一个实数 λ 被称为矩阵 A 的特征值,如果存在一个非零向量 v,使得矩阵 A 作用于向量 v 后,得到的结果与向量 v 在相同方向上(可能是缩放)。

数学表示为:A * v = λ * v

这里,v 是特征向量,λ 是特征值。

特征向量(Eigenvectors): 对于一个矩阵 A 和对应的特征值 λ,特征向量 v 是一个非零向量,满足上述方程 A * v = λ * v。

特征向量表示了在矩阵变换下保持方向不变的向量。

旋转矩阵的特征值和特征向量:

旋转矩阵通常是正交矩阵,它们保持向量的长度不变。旋转矩阵的特征值是复数对,因为它们保持向量长度不变,而不会产生实数特征值。

在二维空间中,特征值通常表示为 e^(iθ) 形式,其中 θ 是旋转角度。特征向量表示围绕旋转中心旋转的轴。

在三维空间中,旋转矩阵有一个实特征值为 1,其对应的特征向量表示旋转轴的方向。其他两个特征值是复数对,与旋转轴垂直。

因此,如果一个旋转矩阵有特征值 1,对应的特征向量就是旋转轴的方向。这是描述旋转操作的重要概念,有助于我们理解矩阵变换和几何变换。

欧拉角


欧拉角将一次旋转分解成3个分离的转角.常用的一种ZYX转角将任意旋转分解成以下3个轴上的转角:

绕物体的Z ZZ轴旋转,得到偏航角yaw
绕旋转之后的Y YY轴旋转,得到俯仰角pitch
绕旋转之后的X XX轴旋转,得到滚转角roll
欧拉角的一个重大缺点是万向锁问题(奇异性问题): 在俯仰角为$\pm$90° 时,第一次旋转与第三次旋转将使用同一个轴,使得系统丢失了一个自由度(由3次旋转变成了2次旋转

4、 四元数

李群李代数

为什么右乘R(t)后变成那样,原因如下

如果A^{T}=-A ,那么A是反对称矩阵

(AB)^{T}=B^{T}A^{T}

(BA^{T})^{T}=(A^{T})^{T}B^{T}=AB^{T}

 

 so(3)=\varphi属于三维空间,\Phi=\varphi^是反对称矩阵,属于三乘三反对称矩阵

 

 

 

 

 李代数求导于扰动模型

 

 BCH公式表达的是两个矩阵的指数相乘

 

 

 像素坐标系À通常的定义方式是:原点o′ 位于图像的左上角,u 轴向右与x 轴平行,v 轴向下
与y 轴平行。像素坐标系与成像平面之间,相差了一个缩放和一个原点的平移。我们设像素坐标在u 轴上缩放了a 倍,在v 上缩放了 \beta倍。同时,原点平移了[cx; cy]T

# 贝叶斯法则:

P(A|B) = (P(B|A) * P(A)) / P(B)
P(A|B) 表示在事件B发生的条件下,事件A发生的概率,也称为后验概率。
P(B|A) 表示在事件A发生的条件下,事件B发生的概率,也称为似然。
P(A) 表示事件A发生的先验概率,即在观察任何数据之前我们对事件A发生的概率的预期。
P(B) 表示事件B发生的边缘概率,也称为证据,它是一个归一化因子,用于确保后验概率在整个样本空间下的和为1。

#最大似然估计
(Maximum Likelihood Estimation,简称MLE)是一种常用的参数估计方法,用于从已知的观测数据中估计出最有可能生成这些数据的参数值。这个方法的核心思想是寻找参数值,使得在这些参数下观察到的数据的概率最大化

直观讲,似然是指“在现在的位姿下,可能产生怎样的观测数据”。由于我们知道观测数据,所
以最大似然估计可以理解成:“在什么样的状态下,最可能产生现在观测到的数据”。这就是最大似
然估计的直观意义。

 

视觉里程计

K是相机的内参,已知的

这个表达式看起来像是一个针对相机标定的方程组,其中涉及到相机的内参数(K)和外参数(R、P、t)。让我来解释一下:

- s1p1:这部分可能代表图像平面上的一个点,由内参数(K)进行投影得到。s1p1 可能是一个齐次坐标点,表示为 (x1, y1, z1, 1)。

- s2p2:同样,这部分也可能代表图像平面上的另一个点,由内参数(K)和外参数(R、P、t)进行投影得到。s2p2 也可能是一个齐次坐标点,表示为 (x2, y2, z2, 1)。

- K:相机内参数矩阵,包含了焦距、主点坐标等信息。

- R:旋转矩阵,描述了相机坐标系到世界坐标系的变换。

- P:投影矩阵,包含了相机坐标系到图像平面的投影变换。

- t:平移向量,表示相机在世界坐标系中的位置。

这个表达式的意义可能是在处理相机的坐标转换和投影过程。通常情况下,相机标定的目标是通过已知的点在图像上的位置和实际世界中的坐标,来估计相机的内参数和外参数,以便能够在图像中准确地定位物体。

需要注意的是,我根据提供的表达式进行了一些猜测,如果您能提供更多的背景信息,我可以给出更准确的解释。

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
在《视觉SLAM十四》中,章节安排如下: 1. 数学基础部分:介绍这本书的基本信息,包括自测题。概述SLAM系统的组成和各模块的工作。介绍三维空间运动、李群和李代数、针孔相机模型以及非线性优化。完成一个曲线拟合的实验。 2. SLAM技术部分:解特征点法的视觉里程计,包括特征点的提取与匹配、对极几何约束的计算、PnP和ICP等方法。学习直接法的视觉里程计,包括光流和直接法的原理,并使用g2o实现一个简单的RGB-D直接法。构建一个视觉里程计框架,解决优化和关键帧选择的问题。深入讨论后端优化,包括Bundle Adjustment和位姿图的优化。介绍回环检测和地图构建的方法。最后,介绍当前的开源SLAM项目和未来的发展方向。 另外,对于四元数的学习,可以先了解复平面的概念。复平面是一个用来描述复数的平面,其中实部和虚部分别对应平面的横坐标和纵坐标。了解复平面后,可以开始学习四元数的概念和应用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [视觉SLAM十四笔记](https://blog.csdn.net/dada19980122/article/details/111404967)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【视觉SLAM十四笔记【逐行代码带你解析】【适合纯小白 ps:因为我就是】(持续更新中)](https://blog.csdn.net/R_ichun/article/details/131964588)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_44598265

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值