HDU 1098 Ignatius‘s puzzle(数学推导,一层循环解决)

Ignatius’s puzzle

Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5x^13+13x^5+kax,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x) if no exists that a,then print “no”.

Input

The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.

Output

The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.

Sample Input

11
100
9999

Sample Output

22
no
43

题意: f(x)=5x^13+13x^5+kax,给出k(0<=k<10000),求出最小的a,任意x,使得f(x) % 65 == 0。
我们先假设f(x)=5x^13+13x^5+kax,65 | f(x),
f(x + 1) = f(x)=5*(x + 1)^13+13*(x + 1)^5+ka(x + 1)
展开得:图片
因为含有C13 * 5 = 65, C5 * 13 = 65,所以这些项都可以约掉,而5x13+13x5+kax是f(x),f(x) | 65,所以这些项也可以约掉,只剩下5+13+k*a。要使65 | f(x + 1),只需让65 | (18 + k * a),让a从0到64遍历便可得到答案。

AC代码:

#include <stdio.h>


int main() {
	int k;
	while(scanf("%d", &k) != EOF) {
		int i;
		for(i = 0; i <= 64; i++) {
			if((18 + k * i) % 65 == 0) {
				printf("%d\n", i);
				break;
			}
		}
		if(i == 65) printf("no\n");
	}
	return 0;
}

End

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页