计算方法--函数插值

插值多项式的存在唯一性定理

当插值结点互异时,满足插值条件式 P n ( x i ) = y i P_n(x_i)=y_i Pn(xi)=yi 的n次插值多项式 p n ( x ) p_n(x) pn(x) 存在且唯一

说明:拉格朗日插值Newton插值 的多项式是相同的多项式,只是形式上有所差异。

1.拉格朗日插值(Lagrange)

线性插值

将相邻插值点连成线段。

公式

对于两点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0), ( x 1 , y 1 ) (x_1,y_1) (x1,y1)线性插值:
L ( x ) = x − x 1 x 0 − x 1 y 0 + x − x 0 x 1 − x 0 y 1 L(x) = \frac{x-x_1}{x_0-x_1}y_0+\frac{x-x_0}{x_1-x_0}y_1 L(x)=x0x1xx1y0+x1x0xx0y1

分段线性插值函数的余项

  • f ( x i ) = y i ( i = 0 , 1 , 2 , . . . , n ) f(x_i)=y_i(i=0,1,2,...,n) f(xi)=yi(i=0,1,2,...,n)
  • S 1 ( x ) S_1(x) S1(x)是插值区间[a,b]内的分段线性插值函数。 S 1 ( x ) = ∑ i = 0 n l i ( x ) y i S_1(x)=\sum_{i=0}^n l_i(x)y_i S1(x)=i=0nli(x)yi

∣ R ( x ) ∣ = ∣ f ( x ) − S 1 ( x ) ∣ ≤ h 2 8 M h = m a x a ≤ x ≤ b ∣ x i + 1 − x i ∣ , M = m a x a ≤ x ≤ b ∣ f ′ ′ ( x ) ∣ |R(x)|=|f(x)-S_1(x)|\le \frac{h^2}{8}M \\ \quad \\ h=\underset{a\le x\le b}{max}|x_{i+1}-x_i|\quad ,M=\underset{a\le x\le b}{max}|f''(x)| R(x)=f(x)S1(x)8h2Mh=axbmaxxi+1xi,M=axbmaxf(x)

抛物插值

过相邻三点 ( x 0 , y 0 ) , ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_0,y_0),(x_1,y_1),(x_2,y_2) (x0,y0),(x1,y1),(x2,y2)的抛物线

公式

L 2 ( x ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) y 0 + ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) y 1 + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) y 2 L_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0 +\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2 L2(x)=(x0x1)(x0x2)(xx1)(xx2)y0+(x1x0)(x1x2)(xx0)(xx2)y1+(x2x0)(x2x1)(xx0)(xx1)y2

拉格朗日插值

考虑过 n + 1 n+1 n+1 个点的插值多项式
L n ( x ) = ∑ i = 0 n [ ( ∏ j = 0 , j ≠ i n x − x j x i − x j ) y i ] L_n(x) = \sum_{i=0}^{n} \left [ \left ( \prod_{j=0,j \ne i}^{n} \frac{x-x_j}{x_i-x_j}\right ) y_i \right ] Ln(x)=i=0nj=0,j=inxixjxxjyi
或等价的简化写为
P n ( x ) = ∑ j = 0 n y j ω n + 1 ( x ) ( x − x j ) ω n + 1 ′ ( x j ) , n > 0 ω n + 1 ( x ) = ∏ i = 0 n ( x − x i ) P_{n}(x)=\sum_{j=0}^{n} y_{j} \frac{\omega_{n+1}(x)}{\left(x-x_{j}\right) \omega_{n+1}^{\prime}\left(x_{j}\right)}, n>0\\\omega_{n+1}(x)=\prod_{i=0}^{n}\left(x-x_{i}\right) Pn(x)=j=0nyj(xxj)ωn+1(xj)ωn+1(x),n>0ωn+1(x)=i=0n(xxi)

插值余项定理

条件

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]内的n+1阶导数连续,记为 f ( x ) ∈ C n + 1 [ a , b ] f(x) \in C^{n+1}[a,b] f(x)Cn+1[a,b]

公式

R n ( x ) = f ( x ) − L n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ∏ i = 0 n ( x − x i ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ω n + 1 ( x ) 其 中 : a < ξ < b R_{n}(x) = f(x)-L_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1) !}\prod_{i=0}^{n}\left(x-x_{i}\right) =\frac{f^{(n+1)}(\xi)}{(n+1) !} \omega_{n+1}(x)\\ \quad \\其中: a<\xi<b Rn(x)=f(x)Ln(x)=(n+1)!f(n+1)(ξ)i=0n(xxi)=(n+1)!f(n+1)(ξ)ωn+1(x)a<ξ<b


由余项定理可推出误差估计,如下。

误差估计

∣ R n ( x ) ∣ ⩽ M ( n + 1 ) ! ∣ ∏ i = 0 n ( x − x i ) ∣ M = max ⁡ a ⩽ x ⩽ b ∣ f ( n + 1 ) ( x ) ∣ \left|R_{n}(x)\right| \leqslant \frac{M}{(n+1) !}\left|\prod_{i=0}^{n}\left(x-x_{i}\right)\right| \\ \quad \\ M=\max _{a \leqslant x \leqslant b}\left|f^{(n+1)}(x)\right| Rn(x)(n+1)!Mi=0n(xxi)M=axbmaxf(n+1)(x)

2.Newton插值公式

差商

f [ x 0 , x 1 , ⋯   , x n ] = f [ x 0 , x 1 , ⋯   , x n − 1 ] − f [ x 1 , x 2 , ⋯   , x n ] x 0 − x n f\left[x_{0}, x_{1}, \cdots, x_{n}\right] = \frac{f\left[x_{0}, x_{1}, \cdots, x_{n-1}\right]-f\left[x_{1}, x_{2}, \cdots, x_{n}\right]}{x_{0}-x_{n}} f[x0,x1,,xn]=x0xnf[x0,x1,,xn1]f[x1,x2,,xn]

性质

  1. 差商 f ( x 0 , x 1 , ⋯   , x k ) f(x_0,x_1,\cdots,x_k) f(x0,x1,,xk)与结点排列次序无关 。(表明牛顿插值具有可拓展性)
  2. f ( x 0 , x 1 , ⋯   , x k ) f(x_0,x_1,\cdots,x_k) f(x0,x1,,xk)是x的m次多项式,则 f ( x 0 , x 1 , ⋯   , x k , x k + 1 ) f(x_0,x_1,\cdots,x_k,x_{k+1}) f(x0,x1,,xk,xk+1)是x的(m-1)次多项式。
  3. f ( x ) ∈ C n [ a , b ] f(x)\in C^n[a,b] f(x)Cn[a,b],且 x i ∈ [ a , b ] , ( i = 0 , 1 , ⋯   , n ) x_i \in [a,b],(i=0,1,\cdots,n) xi[a,b],(i=0,1,,n)互异,则有 f ( x 0 , x 1 , ⋯   , x n ) = f ( n ) ( ξ ) n ! ( ξ ∈ ( a , b ) ) f(x_0,x_1,\cdots,x_n)=\frac{f^{(n)}(\xi)}{n!} \quad \quad(\xi \in (a,b)) f(x0,x1,,xn)=n!f(n)(ξ)(ξ(a,b))

Newton插值多项式

N n ( x ) = f ( x 0 ) + f ( x 0 , x 1 ) ( x − x 0 ) + ⋯ + f ( x 0 , x 1 , ⋯   , x n ) ω n ( x ) ‾ N n ( x ) = N n − 1 ( x ) + f ( x 0 , x 1 , ⋯   , x n ) ∏ i = 0 n − 1 ( x − x i ) ‾ , x ∈ [ a , b ] N_{n}(x)=f\left(x_{0}\right)+f(x_{0}, x_{1})\left(x-x_{0}\right)+\cdots + \underline{ f(x_{0}, x_{1}, \cdots, x_{n}) \omega_{n}(x)} \\ \quad \\ N_{n}(x)=N_{n-1}(x)+\underline{f(x_{0}, x_{1}, \cdots, x_{n}) \prod_{i=0}^{n-1}\left(x-x_{i}\right)}, \quad x \in[a, b] Nn(x)=f(x0)+f(x0,x1)(xx0)++f(x0,x1,,xn)ωn(x)Nn(x)=Nn1(x)+f(x0,x1,,xn)i=0n1(xxi),x[a,b]

差商表

由递推关系 f [ x 0 , x 1 , ⋯   , x n ] = f [ x 0 , x 1 , ⋯   , x n − 1 ] − f [ x 1 , x 2 , ⋯   , x n ] x 0 − x n f\left[x_{0}, x_{1}, \cdots, x_{n}\right] = \frac{f\left[x_{0}, x_{1}, \cdots, x_{n-1}\right]-f\left[x_{1}, x_{2}, \cdots, x_{n}\right]}{x_{0}-x_{n}} f[x0,x1,,xn]=x0xnf[x0,x1,,xn1]f[x1,x2,,xn]
可依次得到
f ( x 0 ) f ( x 1 ) f [ x 0 , x 1 ] f ( x 2 ) f [ x 1 , x 2 ] f [ x 0 , x 1 , x 2 ] ⋮ ⋮ ⋮ f ( x n ) f [ x n − 1 , x n ] f [ x n − 2 , x n − 1 , x n ] ⋯ f [ x 0 , , x 1 , ⋯   , x n ] \begin{array}{l} {\color{Red}f\left(x_{0}\right)} \\ f\left(x_{1}\right) \quad \quad {\color{Red}f\left[x_{0}, x_{1}\right]} \\ f\left(x_{2}\right) \quad \quad f\left[x_{1}, x_{2}\right] \quad \quad {\color{Red}f\left[x_{0}, x_{1}, x_{2}\right] } \\ \quad \vdots \quad \quad \quad \quad \quad \vdots \quad \quad \quad \quad \quad \quad\quad \vdots \\ f\left(x_{n}\right) \quad \quad f\left[x_{n-1}, x_{n}\right] \quad \quad f\left[x_{n-2}, x_{n-1}, x_{n}\right] \cdots {\color{Red}f\left[x_{0}, ,x_1,\cdots, x_{n}\right]} \end{array} f(x0)f(x1)f[x0,x1]f(x2)f[x1,x2]f[x0,x1,x2]f(xn)f[xn1,xn]f[xn2,xn1,xn]f[x0,,x1,,xn]
红色部分即为Newton插值多项式需要的参数

截断误差

插值多项式的存在唯一性定理 可知:Newton插值误差Lagrange插值误差完全一样。为:
R n ( x ) = f ( x ) − L n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ∏ i = 0 n ( x − x i ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ω n + 1 ( x ) 其 中 : a < ξ < b R_{n}(x) = f(x)-L_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1) !}\prod_{i=0}^{n}\left(x-x_{i}\right) =\frac{f^{(n+1)}(\xi)}{(n+1) !} \omega_{n+1}(x)\\ \quad \\其中: a<\xi<b Rn(x)=f(x)Ln(x)=(n+1)!f(n+1)(ξ)i=0n(xxi)=(n+1)!f(n+1)(ξ)ωn+1(x)a<ξ<b

3.埃尔米特插值(Hermite)

许多问题不仅需要函数插值节点的函数值相同,还需要各节点上的导数值也相同,满足这些条件的插值,称为Hermite插值

三次Hermite插值

每两点间做一次插值。

基函数法

条件
  • f ( x 0 ) = y 0 , f ( x 1 ) = y 1 f(x_0)=y_0 , f(x_1)=y_1 f(x0)=y0,f(x1)=y1
  • f ′ ( x 0 ) = y 0 ′ , f ′ ( x 1 ) = y 1 ′ f'(x_0)=y'_0 , f'(x_1)=y'_1 f(x0)=y0,f(x1)=y1
构造函数

H ( x ) = h 0 ( x ) y 0 + h 1 ( x ) y 1 + H 0 ( x ) y 0 ′ + H 1 ( x ) y 1 ′ H(x)=h_0(x)y_0+h_1(x)y_1+H_0(x)y'_0+H_1(x)y'_1 H(x)=h0(x)y0+h1(x)y1+H0(x)y0+H1(x)y1

求得参数

h 0 ( x ) = ( 1 + 2 x − x 0 x 1 − x 0 ) ( x − x 1 x 0 − x 1 ) 2 h 1 ( x ) = ( 1 + 2 x − x 1 x 0 − x 1 ) ( x − x 0 x 1 − x 0 ) 2 H 0 ( x ) = ( x − x 0 ) ( x − x 1 x 0 − x 1 ) 2 η 0 ( x ) = ( x − x 1 ) ( x − x 0 x 1 − x 0 ) 2 \begin{array}{l} h_{0}(x)=\left(1+2 \frac{x-x_{0}}{x_{1}-x_{0}}\right)\left(\frac{x-x_{1}}{x_{0}-x_{1}}\right)^{2} \\ h_{1}(x)=\left(1+2 \frac{x-x_{1}}{x_{0}-x_{1}}\right)\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)^{2} \\ H_{0}(x)=\left(x-x_{0}\right)\left(\frac{x-x_{1}}{x_{0}-x_{1}}\right)^{2} \\ \eta_{0}(x)=\left(x-x_{1}\right)\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)^{2} \end{array} h0(x)=(1+2x1x0xx0)(x0x1xx1)2h1(x)=(1+2x0x1xx1)(x1x0xx0)2H0(x)=(xx0)(x0x1xx1)2η0(x)=(xx1)(x1x0xx0)2

待定系数法

在手算中(考试中)使用待定系数法是较为简单的计算方式

H ( x ) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 H(x)=a_0+a_1x+a_2x^2+a_3x^3 H(x)=a0+a1x+a2x2+a3x3

代入

H ( 0 ) , H ′ ( 0 ) , H ( 1 ) , H ′ ( 1 ) H(0),H'(0),H(1),H'(1) H(0),H(0),H(1),H(1)
得到系数

两点三次Hermite插值余项

R ( x ) = f ( 4 ) ( ξ ) 4 ! ( x − x 0 ) 2 ( x − x 1 ) 2 R(x)=\frac{f^{(4)}(\xi)}{4!}(x-x_0)^2(x-x_1)^2 R(x)=4!f(4)(ξ)(xx0)2(xx1)2

分段三次Hermite插值余项

∣ R ( x ) ∣ = ∣ f ( x ) − S 3 ( x ) ∣ ≤ h 4 384 M 4 h = m a x 0 ≤ i ≤ n − 1 ∣ x i + 1 − x i ∣ , M 4 = m a x a ≤ x ≤ b ∣ f ( 4 ) ( x ) ∣ |R(x)| = |f(x)-S_3(x)|\le \frac{h^4}{384}M_4 \\ \quad \\ h=\underset{0\le i\le n-1}{max}|x_{i+1}-x_i|,M_4=\underset{a\le x\le b}{max}|f^{(4)}(x)| R(x)=f(x)S3(x)384h4M4h=0in1maxxi+1xi,M4=axbmaxf(4)(x)

4.样条插值(Spline)

三次样条插值

在相邻两点 ( x i , y i ) , ( x i + 1 , y i + 1 ) (x_i,y_i),(x_{i+1},y_{i+1}) xiyi,xi+1yi+1构造三次多项式插值。

要求

函数的值,以及一阶导数值,二阶导数值在该点连续。相比于Hermite插值多了二阶导数相同的条件。这在许多工程技术中解决了对函数插值光滑性有较高的计算。

计算 S k S_k Sk(第k,k+1个点间的三次函数)需要
S k − 1 ′ ( x k ) , S k + 1 ′ ( x k + 1 ) 以 及 S k − 1 ′ ′ ( x k ) , S k + 1 ′ ′ ( x k + 1 ) S'_{k-1}(x_k), S'_{k+1}(x_{k+1}) \\ 以及\\ S''_{k-1}(x_k), S''_{k+1}(x_{k+1}) Sk1(xk),Sk+1(xk+1)Sk1(xk),Sk+1(xk+1)
即需要这两点的一阶、二阶导数值确定。
若给定边界条件 S ′ ( x 0 ) = f 0 ′ , S ′ ( x n ) = f n ′ S'(x_0)=f'_0,S'(x_n)=f'_n S(x0)=f0,S(xn)=fn S ′ ′ ( x 0 ) = f 0 ′ ′ , S ′ ′ ( x n ) = f n ′ ′ S''(x_0)=f''_0,S''(x_n)=f''_n S(x0)=f0,S(xn)=fn
则三次样条插值是一个递归计算。

三次样条插值函数求法

已知:

  • f ( x i ) f(x_i) f(xi)
  • f ′ ( 0 ) , f ′ ( n ) f'(0),f'(n) f(0)f(n)

设:

  • S ′ ( x i ) = m i S'(x_i)=m_i S(xi)=mi
  • h i = x i + 1 − x i h_i=x_{i+1}-x_i hi=xi+1xi

求得

  • λ i = h i h i + h i − 1 \lambda_i =\frac{h_i}{h_i+h_{i-1}} λi=hi+hi1hi
  • μ i = h i − 1 h i + h i − 1 \mu_i =\frac{h_{i-1}}{h_i+h_{i-1}} μi=hi+hi1hi1

若问题满足第一边界条件

条件: m 0 = f 0 ′ m_0=f'_0 m0=f0, m n = f n ′ m_n=f'_n mn=fn
则有
( 2 μ 1 λ 2 2 μ 2 λ 3 2 μ 3 ⋱ ⋱ ⋱ λ n − 2 2 μ n − 2 λ n − 1 2 ) ( m 1 m 2 ⋮ m n − 2 m n − 1 ) = ( d 1 − λ 1 f 0 ′ d 2 ⋮ d n − 2 d n − 1 − μ n − 1 y n ′ ) \left(\begin{array}{ccccc} 2 & \mu_{1} & & & \\ \lambda_{2} & 2 & \mu_{2} & & \\ & \lambda_{3} & 2 & \mu_{3} & & \\ \\ & &\ddots & \ddots & \ddots & \\ \\ & & & \lambda_{n-2} & 2 & \mu_{n-2} \\ & & & &\lambda_{n-1} & 2 \end{array}\right)\left(\begin{array}{c} m_{1} \\ m_{2} \\ \\ \vdots \\ \\ m_{n-2} \\ m_{n-1} \end{array}\right)=\left(\begin{array}{c} d_{1}-\lambda_{1} f_{0}^{\prime} \\ d_{2} \\ \\ \vdots \\ \\ d_{n-2} \\ d_{n-1}-\mu_{n-1} y_{n}^{\prime} \end{array}\right) 2λ2μ12λ3μ22μ3λn22λn1μn22m1m2mn2mn1=d1λ1f0d2dn2dn1μn1yn

追赶法求得 m i , i = 1 , 2 , 3 , ⋯   , n − 1 m_i,i=1,2,3,\cdots, n-1 mi,i=1,2,3,,n1
可得
S i ( x ) = ( x − x i ) ( x − x i + 1 ) 2 h i 2 m i + ( x − x i ) 2 ( x − x i + 1 ) h i 2 m i + 1 S_i(x) = \frac{(x-x_i)(x-x_{i+1})^2}{h_i^2}m_i+ \frac{(x-x_i)^2(x-x_{i+1})}{h_i^2}m_{i+1} Si(x)=hi2(xxi)(xxi+1)2mi+hi2(xxi)2(xxi+1)mi+1

若问题满足第二边界条件

条件: S ′ ′ ( x 0 ) = f 0 ′ ′ , S ′ ′ ( x n ) = f n ′ ′ S''(x_0)=f''_0,S''(x_n)=f''_n S(x0)=f0S(xn)=fn
则有:
( 2 1 λ 1 2 μ 1 λ 2 2 μ 2 ⋱ ⋱ ⋱ λ n − 1 2 μ n − 1 1 2 ) ( m 0 m 1 ⋮ m n − 1 m n ) = ( d 0 d 1 ⋮ d n − 1 d n ) \left(\begin{array}{ccccc} 2 & 1 & & & \\ \lambda_{1} & 2 & \mu_{1} & & \\ & \lambda_{2} & 2 & \mu_{2} & & \\ \\ & &\ddots & \ddots & \ddots & \\ \\ & & & \lambda_{n-1} & 2 & \mu_{n-1} \\ & & & &1 & 2 \end{array}\right)\left(\begin{array}{c} m_{0} \\ m_{1} \\ \\ \vdots \\ \\ m_{n-1} \\ m_{n} \end{array}\right)=\left(\begin{array}{c} d_{0}\\ d_{1} \\ \\ \vdots \\ \\ d_{n-1} \\ d_{n} \end{array}\right) 2λ112λ2μ12μ2λn121μn12m0m1mn1mn=d0d1dn1dn
求得 m i m_i mi

5.曲线拟合问题

多项式拟合

( ( φ 0 , φ 0 ) ( φ 0 , φ 1 ) ⋯ ( φ 0 , φ m ) ( φ 1 , φ 0 ) ( φ 1 , φ 1 ) ⋯ ( φ 1 , φ m ) ⋮ ⋮ ⋮ ( φ m , φ 0 ) ( φ m , φ 1 ) ⋯ ( φ m , φ m ) ) ( a 0 a 1 ⋮ a m ) = ( d 0 d 1 ⋮ d m ) \left(\begin{array}{cccc} \left(\varphi_{0}, \varphi_{0}\right) & \left(\varphi_{0}, \varphi_{1}\right) & \cdots & \left(\varphi_{0}, \varphi_{m}\right) \\ \left(\varphi_{1}, \varphi_{0}\right) & \left(\varphi_{1}, \varphi_{1}\right) & \cdots & \left(\varphi_{1}, \varphi_{m}\right) \\ \vdots & \vdots & & \vdots \\ \left(\varphi_{m}, \varphi_{0}\right) & \left(\varphi_{m}, \varphi_{1}\right) & \cdots & \left(\varphi_{m}, \varphi_{m}\right) \end{array}\right)\left(\begin{array}{c} a_{0} \\ a_{1} \\ \vdots \\ a_{m} \end{array}\right)=\left(\begin{array}{c} d_{0} \\ d_{1} \\ \vdots \\ d_{m} \end{array}\right) (φ0,φ0)(φ1,φ0)(φm,φ0)(φ0,φ1)(φ1,φ1)(φm,φ1)(φ0,φm)(φ1,φm)(φm,φm)a0a1am=d0d1dm
( φ j , φ k ) = ∑ i = 0 n φ j ( x i ) φ k ( x i ) , d k = ∑ i = 0 n y i φ k ( x i ) \left(\varphi_{j}, \varphi_{k}\right)=\sum_{i=0}^{n} \varphi_{j}\left(x_{i}\right) \varphi_{k}\left(x_{i}\right), \quad d_{k}=\sum_{i=0}^{n} y_{i} \varphi_{k}\left(x_{i}\right) (φj,φk)=i=0nφj(xi)φk(xi),dk=i=0nyiφk(xi)

φ i = x i \varphi_i = x^i φi=xi时称为多项式拟合。

若设拟合函数为线性方程 p ( x ) = a 0 + a 1 x p(x)=a_0+a_1x p(x)=a0+a1x,则只有 φ 0 , φ 1 \varphi_0,\varphi_1 φ0,φ1,求解 a 0 , a 1 a_0,a_1 a0,a1

当n较大时,拟合所求法方程一般为病态方程组,故需要进行正交多项式拟合
这里就不叙述相关内容,可自行查阅。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Elsa的迷弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值