NLP DAY45 Going “Deeper”: Structured Sememe Prediction via Transformer with Tree Attention

引言与相关工作

本文试图解决什么问题?

这是一个新的问题吗?如果是,为什么值得研究?如果不是,已有工作有什么缺陷?

有哪些相关工作,如何归类,是什么启发了作者的这个思路?

与早期论文相比,这篇论文的关键区别和开创性工作是什么?

方法

Our Modification
注意力分为两个部分:义原注意和位置注意
(1) 义原注意:Semantic attention
捕获树两个节点的语义相似性

(2) 位置注意:Positional attention
专门用于捕获树中节点的拓扑关系

树注意力
在这里插入图片描述
si,sj是两个节点的encoding
pi,pj是位置节点的encoding
bi,j是第i和第j节点的距离
分母是注意力机制的缩放

缩放相似度的结果,是防止梯度消失或梯度爆炸的问题
通过将相似度结果除以根号下2d,进行标准化

对于树位置
将Depth embedding作为一个可学习的参数取取得树输入的特征

重点!!
Depth embedding:
将Depth embedding 作为可学习参数来捕获树输入的特征
Distance embedding 作为可学习参数作为 位置注意的偏置。bias

深度越近,距离越小,注意力越高

为了提高效率,我们在所有层中共享深度嵌入和距离嵌入,因此我们只需要在第一层中计算位置注意力并在其他层中重用它。
在这里插入图片描述

实验

实验如何设计?

本文在对话、机器翻译和文本摘要问题上都进行了实验,这里只摘录对翻译的评估结果。对比工作以数据扩充工作为主。消融实验分析了超参数(人工数据比例)、(一致性损失权重)、softmax温度、分布发散函数和迭代数据增强的作用

使用的数据集?

BabelNet
34,964/3,228/3,228
34,964/3,228/3,228

实验参数
NSTG

TSTG

TaSTG

BERT作为encoder,768维
sememe embedding 是 SPSE 的200维
decoder: 8-layer,8-head transformer decoder
学习率 10 -5
为了避免重复预测
使用波束搜索

Baseline
NSTG
TSTG

TsSTG: 理解这个解码器修改的效率
TaSTN-B 移除偏置
TaSTG-D: 消除depth encoding

评价指标
blue
strict-F1
Edge
Vertex

实验结果
在这里插入图片描述
(1)TaSTG 模型达到了最高的 F1 分数,这表明 Tree-attention 比其他模型更加保守??。所有基于 Transformer 的模型都显着优于 NSTG 模型,这主要是因为 NSTG 仅根据相似的同义词集和现有的义原对进行预测,而测试集中 11.5% 的同义词集具有未见过的义原对,这对 NSTG 来说是很难预测的。

之说TaSTG好,之后就是解释为什么NSTG不好

(2)两个embedding
加了比较好
Depth embedding 的增益比 Distance embedding 的增益要大得多,这可能是因为 Depth embedding 中树结构的可学习参数数量更多。

(3)BLEU 之间的差异小于 F1 的差异,这表明 BLEU 分数可能无法捕获输出树和答案之间的层次相似性。
BlEU值并不能反映层次相似性

更深层次的结构较高

分析
位置注意的效率
不同树复杂度下的性能

分层特征捕获
是否学习层次结构

结构组织能力。

实例分析

稀有义原

定义不能直接暗示某些义原地汉字

相关义原:相似性

复杂地义原

在这里插入图片描述

实验的结果有没有充分支持该工作是有意义的?

注意力机制应用于树

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值