1 课程检测
2 1*1卷积
- 减少计算量
3 空洞卷积
。。。
Faster-RCNN训练流程
31标注labelImg软件
voc的save格式生成一个xml 里面有名称路径object三个数和位位置
yolo的save生成一个class.txt和一个图片名字.txt,里面有class你类别和中心点、w,h,其中是以左上00,右下11为缩放比例
32 Tensorflow object Detection API
- 代码http://github.com/tensorflow/models
–>research -->object detection 但是要下载整个项目400M - 下载编译protobuf linux3.4.0版本 http://github.com/protocolbuffers/protobuf/releases/
* windows http://github.com/protocolbuffers/protobuf/releases/download/v3.4.0/protoc-3.4.0-win32.zip - 把下载到的protoc.exe文件放到c:\windows\System32
- 打开cmd。移动到models-master\research\object_detection 目录。执行:protoc protos object_detection/*.proto --python_out=.
- 执行完毕后,会在protos文件下生成很多.py文件
- 可以利用以上api做很多检测任务
33 使用训练好的目标检测模型完成检测
拷贝object-detection到自己使用的检测的目录 tensorflow>1.9
34训练自己的目标检测模型
- 工具labelimg,自己收集,或公开的数据voc2007数据集20类别。xml或者txt
- xml转化到csv,因为制作record时候要用这个
- 名字、类别、w、h
- 生成:generate_tfrecord文件,有个。bat文件 在detection
- 准备.pbtxt文件
- model.ckpt文件为训练模型,一般采用预训练模型,可降低训练所需的时间,根据实际适合自己的模型,下载完成后解压,将名字带有model。ckpt的三个文件移动到training目录下
- 在object_detection\samples\configs下找到跟模型匹配的config文件,修改config文件
- num_classes:20
- batch_size=16
- num_steps:200000
- fine_tune_checkpoint:"./training/moedl.ckpt" - 训练模型
- 模型导出
- 评估模型
35行人检测作业
数据集是自己标注所有课件的person,只有一个种类