deepseek-r1落地指南(搭建web-ui | 搭建本地代码编辑器)

deepseek-r1落地指南(搭建web-ui | 搭建本地代码编辑器)

写在前面

前两天写了一篇《deepseek-r1本地部署指南》,今天就deepseek-r1本地部署,讲解一下本地部署的大模型如何落地(应用),以便提高工作效率。目前只接触了两类,下面进行介绍。

搭建 web ui 用于网页对话

前两天介绍的deepseek-r1本地部署,最后得到效果是在控制台进行提问,就像下面这样。
命令行使用deepseek-r1

这样很不方便,我们无法对我们的聊天内容进行管理。这时,一个类似于Chat GPT这样的网页对话功能就显得十分重要。

我选择的是Open web ui,具体效果如下。
open web ui 预览
如果你对其他web ui感兴趣,可以参考博客 7个用于运行LLM的最佳开源WebUI ,选择一个自己喜欢的 web ui。

下面讲解如何搭建,在此之前我们需要安装 docker 。

我们进入docker 官网,选择自己电脑对应的版本,然后点击下载。
下载docker
下载完成之后,点击安装,注意docker的安装也是默认C盘的,请确保C盘有足够的容量。

安装完成后,我们打开docker,注册登录一下docker,然后在右下角点击Terminal,打开控制台,然后输入下面命令,然后等待安装完成。

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

在这里插入图片描述

如果是使用其他方式安装(没有参考《deepseek-r1本地部署指南》使用 Ollama安装) deepseek-r1的读者可以参考 open-web-ui官方文档。
https://github.com/open-webui/open-webui

安装完成之后,我们在左侧点击Images(镜像),点击运行,如果需要有配置,默认即可。
Image操作
点击Container(容器),点击
打开web ui网页
此时会打开web ui网页,注册open web-ui账号即可使用。如果无法显示,可以点击进入容器查看
查看容器详情
查看log日志查看存在什么问题,或者尝试重启
日志查看、容器重起

使用deepseek-r1 + Vscode + Cline/Continue 构建本地代码编辑器

这个落地方案是实现本地代码编辑器,但是具体的效果见仁见智,prompt使用的好的话还是挺不错的。主要的好处就是本地搭建的大模型可以很好的保护隐私。本文提供了两种方案,一个是deepseek-r1 + Continue的方案,另一种是deepseek-r1 + Cline的方案,感兴趣的读者都可以试试😜。

deepseek-r1 + Vscode + Continue

在Vscode中下载 Continue插件
下载Continue
配置Continue
config.json文件中,models中加入我们下载好的deepseek-r1模型,配置可以参考我的
配置config文件

	{
      "model": "deepseek-r1:14b",
      "title": "deepseek-r1:14b",
      "provider": "ollama",
      "systemMessage": "You are an expert software developer. You give helpful and concise responses."
    },
    {
      "model": "deepseek-r1:8b",
      "title": "deepseek-r1:8b",
      "provider": "ollama",
      "systemMessage": "You are an expert software developer. You give helpful and concise responses."
    }

然后可以在左侧的对话框中选择我们配置好的模型了。
选择模型
最后测试一下,我的 Prompt 如下

**资深深度学习专家**:你是一名拥有10年深度学习开发经验的人工智能专家,并且专注于时序序列领域,尤其是股票预测方向。

### 目标
- 复现一个Transformer模型,并且能够通用的在时序序列数据上使用(主要是股票数据)。生成预测数据与真实对比的图像。

### 技能
- 擅长使用Vscode编程,使用python语言,并且能够进行代码调试。
- 擅长模型参数调试,知道如何调试模型并选取优秀的参数。
- 擅长本地环境搭建

### 工作流程
模型设计:
	1. 设计Transformer模型组件Attention
    2. 设计Transformer模型的encoder
    3. 设计Transformer模型的decoder
    4. 设计Transformer模型model
    5. 上面提到的模型文件分别用.py文件存储,然后统一放在src下的models文件夹中
    6. 模型参数:
    	- 嵌入维度:32,64
        - 注意力头数:8,4
        - 注意力层数:2,1
        - 学习率:0.001,0.01
预处理:
    1. 对于给定的数据(csv文件)进行预处理,删除字符和日期这类特征。
    2. 将数据进行归一化,然后进行分批(batch)输入到模型中
    3. 归一化提供Z-score标准化、Min-Max标准化或不使用标准化三种方法
    4. 训练集和测试集比例为8:2,使用滑动窗口,默认使用7天预测下一天的数据
    5. 数据放在src文件夹下的data文件夹中

模型训练:
    1. 设计不同的参数进行训练
    2. 设计模型训练,epoch为100-200
    3. 使用Adam optimizer。
    4. 早停条件,监控验证集损失,当连续若干epoch损失不再下降时停止训练。
    5. 为模型设计中的参数设置不同组合,以寻找最佳配置

结果保存:
    1. 绘图使用python的matplotlib库
    2. 预测的值用橙色线画出,真实值用蓝色画出
    3. 将不同的参数设置为图片名进行保存
    4. 将最终的MSE、MAE、R2、MAPE的结果保存到csv中,上面指标为纵轴,横轴为模型中的参数。
    5. 结果统一放在src下的result中,图片放在/src/result/figures,结果放在/src/result/data

### 定义
- Transformer表示人工智能自然语言处理(Natrual Language Process)领域中的论文《Attention is All you Need》中提出的模型Transformer。

### 约束条件
- 确保代码不用于非法金融活动,如操纵市场
- 主机配置:
    1. cpu:amd r3-3100
    2. gpu:RTX3060 8g
    3. SYSTEM:win11
    4. MEMORY: 16G

### 描述

### 输出格式
1. 首先生成模型的目录结构
2. 然后生成对应的模型文件
3. 如果模型无法运行,需要自动debug(调试)

### 初始化
你是一名拥有10年深度学习开发经验的人工智能专家,并且专注于时序序列领域,尤其是股票预测方向,请以专业和创新的视角思考问题。

由于输出太长了,仅展示部分输出。
部分输出

deepseek-r1 + Vscode + Cline

首先是安装Cline插件
安装Cline
配置信息可以参考
Cline配置
API选择 Ollama,指令这里我只设了一个简单的“使用中文回答问题”。
使用Prompt和Continue测试的Prompt一致(偷个懒),部分结果展示如下
Cline效果

以上就是本文的全部内容了,由于过年回家,文章写的有点粗糙,如果有不懂的读者欢迎在下方留言❤️~

### DeepSeek-R1 本地部署与知识库搭建指南 #### 环境准备 为了顺利进行 DeepSeek-R1本地部署,需遵循简易的三步流程来完成环境构建。此过程设计得非常直观,旨在让不同技术水平的人都能顺利完成设置工作[^1]。 #### 部署步骤详解 具体来说,在第一步中,用户需要准备好运行所需的硬件和软件条件;第二步涉及安装必要的依赖项和服务端口配置;最后一步则是启动服务并验证其正常运作状态。通过这三个阶段的操作,可以确保整个系统的稳定性和功能性得到保障。 对于希望进一步优化性能或减少资源占用的情况,可以选择使用蒸馏版本的模型——即 **DeepSeek-R1-Distill-Qwen-7B** 。该版本不仅保持了原有功能特性,还实现了更高效的运算效率以及更低廉的成本投入[^2]。 #### 开启联网搜索及其他高级特性 一旦完成了基本的部署之后,还可以探索更多实用的功能选项。比如启用互联网搜索能力,这使得应用程序能够访问外部网络获取最新资讯和支持材料。此外,还包括但不限于支持多种文件格式解析(PDF, CSV, TXT, MD, DOCX),允许用户上传文档并与之互动交流等功能[^3]。 ```bash # 示例命令:假设已按照官方指导完成前期准备工作后执行如下指令以激活特定模块 sudo systemctl start deepseek-r1.service curl http://localhost:8080/api/v1/search?q=example&source=internet ``` #### 构建个性化知识库 针对企业级应用场景下的需求定制化开发,则可以通过集成第三方API接口或者自定义插件的方式扩展平台的核心服务能力。例如创建专属的知识管理体系,利用自然语言处理技术自动分类整理海量数据源,并提供精准检索体验给最终使用者。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值