模型融合的权重确定

本文介绍了如何通过最小化误差来确定模型融合中各模型的权重,使用协方差矩阵的逆矩阵与单位向量相乘的方法,以实现综合模型预测结果与真实值的最佳拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要确定权重,可以使用协方差矩阵的逆矩阵作为权重。权重向量可通过以下公式计算:

权重向量=协方差矩阵的逆矩阵×单位向量
推导:
权重向量的公式可以通过最小化误差的方法推导得到。基本思想是希望通过模型融合,得到的综合模型的预测结果与真实值之间的误差最小化。在这个过程中,我们需要确定每个模型的权重,使得其预测结果能够最好地与真实值拟合。

假设我们有 n 个模型,它们的预测结果分别为 ( y 1 , y 2 , . . . , y n ) ( y_1, y_2, ..., y_n ) (y1,y2,...,yn),真实值为 ( y ) ( y ) (y)。我们希望通过权重 ( w 1 , w 2 , . . . , w n ) ( w_1, w_2, ..., w_n ) (w1,w2,...,wn) 来对这些预测结果进行加权平均,得到综合模型的预测结果 ( y ^ ) ( \hat{y} ) (y^),即:

[ y ^ = w 1 ⋅ y 1 + w 2 ⋅ y 2 + . . . + w n ⋅ y n ] [ \hat{y} = w_1 \cdot y_1 + w_2 \cdot y_2 + ... + w_n \cdot y_n ] [y^=w1y1+w2y2+...+wnyn]

为了最小化综合模型的预测结果与真实值之间的误差,可以使用最小二乘法,即最小化误差的平方和。误差可以表示为:

[ Error = ( y − y ^ ) 2 ] [ \text{Error} = (y - \hat{y})^2 ] [Error=(yy^)2]

( y ^ ) ( \hat{y} ) (y^) 的表达式代入其中:

[ Error = ( y − ( w 1 ⋅ y 1 + w 2 ⋅ y 2 + . . . + w n ⋅ y n ) ) 2 ] [ \text{Error} = (y - (w_1 \cdot y_1 + w_2 \cdot y_2 + ... + w_n \cdot y_n))^2 ] [Error=(y(w1y1+w2y2+...+wnyn))2]

为了找到最小化误差的权重 ( w 1 , w 2 , . . . , w n ) ( w_1, w_2, ..., w_n ) (w1,w2,...,wn),我们可以对误差关于权重的偏导数等于零,求得最优的权重。这个问题可以转化为线性代数中的矩阵求解问题。具体来说,我们可以将误差关于权重的偏导数设置为零,并解出权重向量 ( w ) ( w ) (w)这个过程等价于求解协方差矩阵的逆矩阵与单位向量的乘积

示例:

# 先构造一个矩阵
df = np.array([lgb6812.prob, xgb6787.prob, cat6777.prob])
# 计算协方差矩阵
np.corrcoef(df)

# 给定协方差矩阵
cov_matrix = np.array([[1.        , 0.94866069, 0.9108549 ],
                       [0.94866069, 1.        , 0.9113983 ],
                       [0.9108549 , 0.9113983 , 1.        ]])

# 计算协方差矩阵的逆矩阵
inv_cov_matrix = np.linalg.inv(cov_matrix)

# 单位向量
unit_vector = np.ones((3, 1))

# 计算权重向量
weight_vector = np.dot(inv_cov_matrix, unit_vector)

# 归一化权重向量
normalized_weights = weight_vector / np.sum(weight_vector)

print("权重向量:", normalized_weights.flatten())

输出:

权重向量: [0.36567303 0.31048439 0.32384258]

随后可以根据序来决定每个模型的权重大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值