神经网络与深度学习(3)

一、基本卷积神经网络

1. AlexNet

论文传送门:http://cs.toronto.edu/~fritz/absps/imagenet.pdf

AlexNet 的网络结构如上图所示,1个输入层(227*227*3),224据说是写论文时的笔误,5个卷积层(C1、C2、C3、C4、C5)、3个全连接层。AlexNet的出现,在深度学习的历史上具有里程碑的意义,其证实了深度学习在解决复杂模式识别问题上的巨大潜力,同时也促进了GPU等并行计算技术在AI领域的广泛应用。

主要创新点
(1)深层架构

AlexNet采用了比早期神经网络更深的结构,它包含8层(包括5个卷积层和3个全连接层),证明了通过增加网络层次可以提取更复杂、更高层次的特征表示,并显著提高了图像识别任务的性能。

AlexNet网络结构
图1  AlexNet网络结构

如图1所示,其左侧为连接数,右侧为参数。

(2)输入样本

对图像数据采取水平翻转,随机裁剪,光照或彩色变换等操作,有效提升了模型的泛化能力。

但是如上图所示目标,其不采取上下翻转的方式,因上下翻转不符合物体在实际中存在的状态。

(3)激活函数

采取ReLU替代Tan Sigmoid;

用于卷积层与全连接之后;

传统的神经网络普遍使用Sigmoid或者tanh等非线性函数作为激励函数,然而它们容易出现梯度弥散梯度饱和的情况。以Sigmoid函数为例,如下图所示,当输入的值非常大或者非常小的时候,值域的变化范围非常小,使得这些神经元的梯度值接近于0(梯度饱和现象)。由于神经网络的计算本质上是矩阵的连乘,一些近乎于0的值在连乘计算中会越来越小,导致网络训练中梯度更新的弥散现象,即梯度消失。

而ReLU不存在这种缺陷,其不会出现值域变化小的问题。

(4)Dropout

在每个全连接层后面使用一个 Dropout 层,以概率 p

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值