DG方法汇总
基于文章:Domain Generalization: A Survey
领域对齐
元学习
数据增强
1、图像转换
2、对抗梯度
任务对抗梯度
域对抗梯度
3、增强网络
随机增强网络
随机增强网络RandConv[191]基于使用随机初始化的单层卷积神经网络将输入图像转换为“新域”的思想。由于权值在每次迭代中从高斯分布中随机采样,不进行学习,变换后的图像主要包含随机颜色失真,不包含有意义的变化,最好在传递到任务网络之前与原始图像混合。
搜索词:randconv domain generalization
现成的风格迁移模型
现成的风格转移模型利用了风格转移的进步[233],几种DG方法[29]、[192]、[193]使用现成的风格转移模型,如AdaIN[233]来表示A(·),它本质上将图像从一个源域映射到另一个源域进行数据增强。人们可以利用外部样式来进一步多样化源训练数据[20],而不是在源域之间传输图像样式。尽管这些方法不需要训练风格迁移组件,但它们仍然需要域标签进行域翻译。
可学习的增强网络
可学习的增强网络这组方法旨在学习增强神经网络来合成新的域[35]、[36]、[194]。在[36],[194]中,通过最大化图像生成器的域分类损失来生成与域无关的图像。在[35]中,通过最大化每个源域来合成伪新域,即原始图像和合成图像之间的最优传输[217]测量的域距离。
4、基于特征的增强
基于特征的增强虽然上述可学习的增强模型已经显示出有希望的结果,但它们的效率是一个主要问题,因为它们需要训练繁重的图像到图像转换模型。另一项研究侧重于特征级增强 [23]、[28]、[147]。受 CNN 特征统计中捕获图像样式的观察的启发,MixStyle [23]、[28] 通过在不同领域的实例之间混合 CNN 特征统计信息来实现样式增强。在[147]中,Mixup[234]被应用于混合像素和特征空间中不同领域的实例。
集成学习
与DG相关领域
1、监督学习
是机器学习中最常见的类型之一,它涉及使用带有已知输出(标签或结果)的数据来训练模型。在监督学习中,算法通过分析标记的训练数据集来学习映射函数,这个函数可以从给定的输入变量(通常称为特征)预测输出变量(通常称为目标或标签)。训练过程涉及到调整模型的参数,以最小化预测输出与实际已知输出之间的差异。
监督学习的类型
监督学习主要分为两类任务:
- 回归:预测连续值输出。例如,预测房价、股票价格或者温度等。
- 分类:预测离散值输出。例如