ISP—图像调试实习生(第三天)

ISP—黑电平校正(BLC)

目录

ISP—黑电平校正(BLC)

1、介绍

2、黑电平形成的原因

3、校正方法

4、调试


1、介绍

众所周知,CMOS传感器采集的信息经过一系列转换,最后生成原始RAW格式数据,RAW数据每个像素点只有一种颜色信息,只是RGB的一个,但是由于sensor对绿色光的频率基本可以全部通过,故RAW data数据里边,有两个G,一个R,一个B。我们要想得到RGB数据就必须利用已有的信息来得到缺失的信息,这个处理后面专门介绍。这里接着黑电平校正说。

我们知道图像数据一般为0--255,但sensor在出厂的时候,厂家一般会设置图像数据输出范围如5-250等,反正最低电平不为零。因此我们就需要对图像数据范围进行调整,使其最小值为零,这就是黑电平校正。

黑电平(BLC)指的是黑色的最低点,指在经过一定校准的显示装备上,没有一行光亮输出的视频信号电平,定义感光图像数据为0时对应的sensor信号电平值。

2、黑电平形成的原因

CMOS传感器采集的信息经过一系列转换生成原始RAW格式数据。以8bit数据为例,单个pixel的有效值是0~255,但是实际AD芯片(模数转换芯片)的精度可能无法将电压值很小的一部分转换出来,因此,sensor厂家一般会在AD的输入之前加上一个固定的偏移量,使输出的pixel value在5(非固定)~255之间,目的是为了让暗部的细节完全保留,当然同时也会损失一些亮部细节,由于对于图像来说,我们的关注度更倾向于暗部区域,ISP后面会有很多增益模块(LSC、AWB、Gamma等),因此亮区的一点点损失是可以接受的。

sensor的电路本身会存在暗电流,导致在没有光线照射的时候,像素单位也有一定的输出电压,暗电流这个东西跟曝光时间和gain都有关系,不同的位置也是不一样的。因此在gain增大的时候,电路的增益增大,暗电流也会增强,因此很多ISP会选择在不同gain下减去不同的bl的值。

许多sensor在输出RAW数据会存在附加的黑电平值,需要在ISP最前端去除干净,如果去除不干净,干扰信息会影响后端ISP各个模块的处理,尤其会导致AWB模块容易不准,出现画面整体偏绿或者整体偏红现象。

3、校正方法

一般BLC模块会放在ISP比较靠前的位置,因为我们希望图像在进入其他模块之前能够还原最为真实的图像。有些sensor会在sensor内部集成BLC的模块,那么此时ISP里的BLC模块只做微调即可。

图像调试流程图

目前主流的黑电平校正方案有两种:

  1. 由于硬件设计人员在设计BLC模块时需要考虑效果和成本,因此目前市场上使用的ISP一般采用的方法是在sensor输出的图像上减去一个固定数值,该固定值,对RGB各通道可以是一样,也可以是不一样,目前大多数厂家如安霸、海思等基本都是采用该方案;
  2. 利用黑电平随温度和gain的漂移曲线,利用一次函数的方式进行校正,但是对于不同sensor,漂移曲线不一样,因此该方案没有作为通用方案。

BLC各个通道均需要校正,目前比较长用的方法有:

  1. 中值
  2. 全局均值
  3. 局部均值
  4. 自定义

4、调试

黑电平校准图片的抓取,需要将摄像机置于全黑环境下,曝光模式调整为手动,曝光时间调整到最大值(一般调整到40ms以上即可),模拟增益、数字增益和ISP数字增益调整为1倍。

摄像机参数设置好以后,就可以使用PQTools中的HiPQ Capture Tool工具进行抓图,抓图时RAW bits根据不同SENSOR的配置,选择正确的数据位数,Mode选择Linear,Frames设置为1帧即可,点击Capture按钮就可以抓取RAW图片。如下图所示:

黑电平校正

黑电平校准需要使用海思的ISP校准工具导入已经抓取的各种增益下的黑电平RAW图像,在进行校准的时候需要填写图像的相关信息,包括Sensor的型号,图像尺寸,BAYER格式等,如下图所示,这些信息在使用抓图工具抓取的图像默认名称种均可以体现,或者在PQtools工具的PubAttr页面中也是可以查询到。

参考

https://www.cnblogs.com/qiqibaby/p/8591036.html

https://blog.csdn.net/zdz8889/article/details/45769289

https://blog.csdn.net/xiaoyouck/article/details/72824534

 

<think>好的,我需要帮助用户了解海思ISP图像调试的方法和相关资料。首先,用户提供的引用内容中提到了几个关键点:ISP参数调整、VIU协同工作、HiPQTools工具使用、低照度环境调试等。我需要将这些信息整合成一个结构清晰的回答,并生成相关问题。 第一步,检查用户的问题。用户想要海思ISP图像调试的方法和资料,根据提供的引用,引用1提到ISP参数调整和色彩管理,引用2说明ISP与VIU的协作,引用3涉及HiPQTools工具的使用,引用4是低照度调试案例。我需要将这些内容分点说明,确保每个部分都涵盖对应的引用。 接下来,按照用户的结构要求,回答需要分步骤,使用中文,并正确应用LaTeX格式。例如,在讲解调试流程时,可能需要提到数学表达式,如增益公式,这时候需要用$...$包裹。例如,总增益计算可能需要写成$G_{total} = G_{A} \times G_{D}$。不过根据提供的引用,可能没有具体的公式,所以需要确认是否有必要添加数学表达式。如果没有,可能不需要,但需要确保所有提到的技术点符合格式要求。 然后,生成相关问题。根据用户提供的示例,问题应围绕海思ISP调试的不同方面,如工具使用、参数优化、低照度处理、协同工作等。需要确保每个问题都基于引用中的内容,比如引用3提到的黑白校定,可以生成关于HiPQTools工具操作的问题。 最后,确保引用标识正确添加在相关段落的末尾。例如,在讨论ISP与VIU协作时,末尾添加[^2],在提到黑白校定时添加[^3]等。需要仔细检查每个引用对应的内容,避免混淆。 总结步骤: 1. 分点介绍调试方法,每点对应相关引用。 2. 确保使用正确的LaTeX格式,若有数学内容。 3. 生成相关问题,覆盖不同引用中的主题。 4. 正确标注引用标识。 5. 保持回答结构清晰,逐步引导用户理解。 现在开始组织内容,确保每个部分都符合用户的要求,并自然引用提供的资料。</think>### 海思ISP图像调试方法与资料总结 #### 一、调试核心流程 1. **ISP与VIU协同配置** 调试前需确保ISP与视频采集单元(VIU)的时序匹配,以兼容不同sensor输入。例如,初始化完成后需通过VIU接口配置输入时序,确保ISP动态调节输出的图像能被正确采集[^2]。 **关键步骤**: - 从VI日志中获取分辨率信息 - 根据sensor的Bayer模式(如RGGB、BGGR)调整ISP输入时序 2. **基础参数调整** 包括黑电平校正、白平衡、去噪等。例如: - **黑白校定**:通过HiPQTools工具的`Black Level Settings`功能获取黑电平参数,消除暗电流影响[^3] - **色彩校正**:根据sensor特性调整颜色矩阵,确保色彩还原准确[^1] 3. **动态图像质量优化** 启用`Run`模式后,ISP会根据环境动态调节参数。例如: - 低照度场景需结合模拟增益(Again)、数字增益(Dgain)与ISP Dgain(如$G_{total}=G_{A} \times G_{D}$),并控制帧率避免噪点[^4] - 通过锐化参数增强细节,但需平衡锐利度与失真风险[^1] #### 二、关键工具与操作 - **HiPQTools工具链**: - 用于黑白校定、Gamma曲线调整、3D降噪等 - 示例操作: ```python # 获取Bayer模式(从文件名解析,如IMX585_RGGB_12bit.raw) bayer_pattern = parse_filename(filename) set_bayer_mode(bayer_pattern) # 设置ISP输入格式 ``` - 支持实时参数加载与效果预览 - **调试资料获取** 1. 海思官方文档(如《HiISP开发指南》) 2. 案例参考:低照度调试中,可设置$Again=31282$、$Dgain=8192$,并观察暗部噪点与动态范围[^4] #### 三、典型场景调试案例 - **低照度优化**: - 环境:暗房环境,仅微弱光源 - 参数配置: - 固定帧率(如30fps),避免动态变帧引入闪烁 - 分阶段调整Again/Dgain,控制噪声增长曲线 - 效果验证:通过VIU采集图像,检查暗部细节与色彩偏移
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岁月蹉跎的一杯酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值