直播预告
就在本周六!“真实世界研究前沿方法”课程来啦,支持预报名!
或许不少人都会有这么一个经历,在写文章的limitation时,实在想不出写什么,总可以来一句万金油:
“即使我们考虑了XX的混杂,但仍然可能存在未考虑的混杂因素对研究结果产生影响。”
有问题吗?
没有问题,毕竟顶刊也这么用。
来源文献:Lindenauer PK, Stefan MS, Pekow PS, et al. Association Between Initiation of Pulmonary Rehabilitation After Hospitalization for COPD and 1-Year Survival Among Medicare Beneficiaries. JAMA. 2020 May 12;323(18):1813-1823.
那有没有什么方法对未测量的混杂因素进行评估呢?
有!那就是Ding和VanderWeele在2017年提出的E-value(简称E值)。
什么是E-value(E值)?
E-value(E值)是观察性研究中,对未测量混杂因素进行敏感性分析的一个重要指标。
图1 E值计算公式
文献来源:Tyler J. VanderWeele, Peng Ding. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med.2017;167:268-274.
其核心理念为:未测量的混杂必须有多大才能否定观察到的结果?
简单来说,就是指一个未测混杂至少需要有多大的关联强度才能推翻我们目前的结果,而E值就是指该关联强度的最小值。
具体来说,
一个较大的E值意味着需要有极强关联的未测混杂才能完全否定目前所得的暴露-结局之间的关联结果;
而较小的E值意味着所得结果只需要一个较弱关联强度的未测混杂便可推翻该结果。
因此,在观察性研究中,E值越大,意味着目前所得结果越稳健。反之证据越薄弱。
举个例子
有学者曾在期刊《Clinical And Molecular Hepatology》(医学一区,IF=14)发表了一篇题为:“Extrahepatic malignancies and antiviral drugs for chronic hepatitis B: A nationwide cohort study ”的研究论文,研究团队主要比较了恩替卡韦(ETV)和富马酸替诺福韦二吡呋酯(TDF)治疗在肝外恶性肿瘤(EHM)和肝内恶性肿瘤(HM)风险方面的差异。
后台回复关键词“pdf”获取全文哦!更多关于敏感性分析常见方法和E-value分析实现路径,请关注本周六的“真实世界研究前沿方法”直播!感兴趣的可联系郑老师团队,进行预报名!详情可咨询助教,微信号:aq566665
该研究主要使用韩国国民健康保险服务(NHIS)数据库,经过纳排,最终纳入 53,486 名符合条件的慢性乙型肝炎(CHB) 患者(其中24,287 名接受ETV治疗,为ETV 组;29,199 名接受 TDF治疗,为TDF 组)。
由于两组之间基线不平衡,研究团队使用倾向评分匹配(PSM)和逆治疗加权概率(IPTW)平衡ETV组和TDF组。
研究结果表明,经过3年抗病毒治疗后,与ETV相比,接受TDF治疗的CHB患者的EHM和IHM风险降低了约30%。
图2 研究摘要
在本研究的敏感性分析中,E值用于评估需要多大的未测量的混杂因素才能减弱抗病毒治疗与EHM或IHM发生率之间的关联。
E值分析表明,在控制模型中其他协变量的情况下,若要将亚分布风险比(SHR)降至1,从而完全消除核苷(酸)类似物(NA)类型与EHM发生率之间的关联,需要一个未测量的混杂因素同时与NA类型和EHM发生率以风险比(RR)为2.21的强度相关联。
该值同样可以根据我们之前的公式得出
图3 ETV或TDF治疗慢性CHB患者的倾向评分匹配队列的临床结果
最终,根据IHM 发病率的 E值来看,研究人员认为似乎不太可能存在未测量的混杂因素能够改变TDF疗效的优越性。
图4 E值表示抗病毒治疗对肝外和肝内恶性肿瘤发生率的影响
虽然E值比较直观,指标的计算也比较方便,但它只有在假设未测量的混杂因素对暴露因素与结局具有相同的关联度的前提下获得,因此临床意义不明确。
观察性研究想要得出令人信任服的结论,必须要进行科学、严谨的设计,规范的统计分析。如果你想开展规范的真实世界研究,或是在敏感性分析中遇到难题,不妨来看看2.22~23日,郑老师团队的“真实世界研究方法与高级统计技术”直播课程吧!
课程优势
相比网络上2000-3000元课程,我们的课程:
⭕从0到1构建RWS知识体系、理论+实操
真正零基础,由浅入深,集中式培训、从基础概念到高级技术,循序渐进,全面提升你的研究能力。丰富的案例分析与实战演练,确保你能够学以致用。
⭕️前沿方法,系统教学
目前市面上鲜有对于“目标模拟试验(模拟RCT)”、“倾向性评分重叠加权(Overlap Weighting, OW)”方法的系统教学,之前也是有很多学员反应想要学习该内容,所以我们新一期直播课程郑老师赶紧安排上
⭕️全套课程材料赠送
全套资料免费赠送,包括1000多页的PTT和“本课程”所需要的相关数据及软件!赠送全套倾向性得分匹配实操视频(R语言与SPSS)
⭕️直播+录播,内容全面
涵盖回顾性临床研究数据分析国际认可的方法:多重填补缺失数据、倾向得分匹配、敏感性分析、DAG方法、限制性立方条样图等。在线学习,随时随地参与课程,不受时间和地点限制。本课程内容将涵盖更广的观察性研究、真实世界临床研究的设计与数据分析。SCI发表不在话下。
⭕️课后习题测试,巩固学习
独一无二的真实世界研究选择题测试,巩固练习,让你更快更好的掌握知识点!
⭕️视频永久有效+1年答疑
⚠️ 课程视频永久回放,课程群答疑+1到2周1次统计问题直播答疑,答疑时限1年,课程结束后,确保学习效果,帮助学员提升!
培训内容
培训时间
✅2025年2月22日-23日(早上8:30-下午17:30)
培训方式
✅小鹅通线上直播+录播回放开展培训
(届时直播链接将会发送到课程群,购课以后请联系助教拉群,助教联系方式请看文末)
培训内容
真实世界临床研究直播内容(2.22-23)
△以上为大致的课程内容,实际内容会略有出入
真实世界临床研究2024年直播回放版视频内容
倾向性得分匹配全套实操录播视频(R+SPSS)
主讲讲师
👨🏫郑卫军老师
本公众号的主持者、主要撰稿者。浙江中医药大学公共卫生学院医学统计学教研室主任。浙江省预防医学会卫生统计学专业委员会副主任委员。主要从事流行病学与统计学方法教学与研究,在公共卫生大数据、临床试验统计学方法、真实世界临床研究统计方法方面具有丰富的经验。
此外,本课程将由其它老师和统计师分担2-4个小时的课程。
课程费用
1. 单独购买本课程(长期会员)
真实世界临床研究(临床回顾性数据分析) 799元 真实世界研究R语言1对1指导 4990元 |
关于1对1指导的内容,各位可以点击下方了解
2.任选组合课程购买(长期会员)
这几年,郑老师团队相继开设了多么临床科研设计与统计课程,如果您需要,选择多门课程,有更多优惠,最高优惠50%左右
4课:2490元 | 6课:2990元 |
8课:3490元 | 10课:3999元 |
注:购买10门长期会员任选者,赠送价值899元的2024-2025开设的新直播课程一门或等值优惠券。
其它课程介绍请点击下方链接:
3.如果你目前有相应的课题经费,需要今后几年培养更多的学生,我们将推出“4999”的课程,包括2024年,2025年所有价值999元以内的课程(或999元的优惠券1张)。
目前所有14课+2025的直播课: 4999元 |
注:有疑问可以咨询助教,助教微信号:aq566665
4.对于长期会员,1年定期安排直播答疑(1-2周一次),所有回放视频永久!
5. 目前,全部课程包括真实世界研究、R语言、Meta分析、SPSS课程、重复测量资料分析、临床试验数据分析、临床预测模型、NHANES公共数据库挖掘,GBD公共数据库挖掘,孟德尔随机化方法课程(初级班+高级班)、机器学习均可马上观看课程回放视频。
课程购买方式与咨询
咨询付款方式👇
可以添加下方助教微信咨询详情,扫描购课二维码购课。
可开技术服务费、培训费、咨询费等发票;可出具课程学习通知,方便报销,可以对公转账。
助教二维码,联系咨询 | 购课二维码,直接购买 |
本公众号的宗旨是“让天下没有难学的统计学!”,我们的目标是,大家真正从这里学到了统计学。