矩阵的特征值是啥? 一文带你读懂!!!

1. 矩阵的特征值 是什么?

特征值(eigenvalue)是线性代数中的重要概念。对于一个 n×n 矩阵 A,如果存在一个非零向量 v ⃗ \vec{v} v 和一个标量 λ λ λ,使得:

A v ⃗ = λ v ⃗ A\vec{v} = λ\vec{v} Av =λv

则称 λ λ λ 是矩阵 A 的特征值,而 v ⃗ \vec{v} v 是对应于特征值 λ λ λ 的特征向量。

要求矩阵 A 的特征值,需要解特征方程:

d e t ( A − λ I ) = 0 det(A - λI) = 0 det(AλI)=0

其中 I 是 n×n 单位矩阵,det 表示行列式。

特征值的一些重要性质:

  1. n×n 矩阵恰好有 n 个特征值(包括重复的)
  2. 矩阵的迹等于所有特征值之和
  3. 矩阵的行列式等于所有特征值的乘积
  4. 实对称矩阵的所有特征值都是实数

让我用一个简单的 2×2 矩阵举例:

A = [ 1 2 2 1 ] A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} A=[1221]

特征方程为:
d e t [ 1 − λ 2 2 1 − λ ] = 0 det\begin{bmatrix} 1-λ & 2 \\ 2 & 1-λ \end{bmatrix} = 0 det[1λ221λ]=0

( 1 − λ ) 2 − 4 = 0 (1-λ)^2 - 4 = 0 (1λ)24=0

解得特征值: λ 1 = 3 λ_1 = 3 λ1=3, λ 2 = − 1 λ_2 = -1 λ2=1

2. 矩阵特征值形象解释

让我尝试用更直观的方式解释矩阵的特征值是什么:

  1. 直观理解
    想象矩阵 A 是一个变换(比如旋转、拉伸、压缩),当这个变换作用在平面或空间中的向量上时:
  • 大多数向量会改变方向和大小
  • 但是有一些特殊的向量,它们只改变大小,方向不变
  • 这些特殊的向量就是特征向量
  • 它们变化的倍数就是特征值
  1. 举个生活中的例子
    想象你在拉一个弹簧:
  • 弹簧可以在任何方向拉伸
  • 但是弹簧自然会沿着某个特定方向(特征向量的方向)变形
  • 你拉伸的倍数就像是特征值
  1. 为什么要找特征值?
  • 特征值帮助我们找到矩阵变换最本质的特征
  • 比如:在这个变换下,哪些方向最容易被拉伸(大的特征值)
  • 哪些方向会被压缩(小的特征值)
  • 这些信息在实际应用中非常重要
  1. 动手验证
    让我们用前面那个 2×2 矩阵的例子:
    A = [ 1 2 2 1 ] A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} A=[1221]

它的一个特征值是 3,对应的特征向量是 [ 1 1 ] \begin{bmatrix} 1 \\ 1 \end{bmatrix} [11]

当矩阵 A 作用在这个向量上时:
[ 1 2 2 1 ] [ 1 1 ] = [ 3 3 ] = 3 [ 1 1 ] \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3\begin{bmatrix} 1 \\ 1 \end{bmatrix} [1221][11]=[33]=3[11]

您看:

  • 向量的方向没变(还是 [1,1] 的方向)
  • 只是大小变成了原来的 3 倍
  • 这个"3"就是特征值

3. 矩阵特征值的性质讲解

1. n×n 矩阵具有 n 个特征值

这是因为特征方程 d e t ( A − λ I ) = 0 det(A - λI) = 0 det(AλI)=0 是一个 n 次多项式方程。根据代数基本定理,n 次多项式恰好有 n 个复根(包括重复根)。例如:

  • 2×2 矩阵有 2 个特征值
  • 3×3 矩阵有 3 个特征值

2. 矩阵的迹与特征值之和

对于矩阵 A,如果其特征值为 λ 1 , λ 2 , . . . , λ n λ_1, λ_2, ..., λ_n λ1,λ2,...,λn,则:

t r ( A ) = λ 1 + λ 2 + . . . + λ n tr(A) = λ_1 + λ_2 + ... + λ_n tr(A)=λ1+λ2+...+λn

这里 t r ( A ) tr(A) tr(A) 表示矩阵的迹,即主对角线元素之和。

3. 矩阵的行列式与特征值之积

矩阵 A 的行列式等于其所有特征值的乘积:

d e t ( A ) = λ 1 × λ 2 × . . . × λ n det(A) = λ_1 × λ_2 × ... × λ_n det(A)=λ1×λ2×...×λn

这个性质解释了为什么矩阵不可逆(奇异)等价于至少有一个特征值为 0。

4. 实对称矩阵的特征值

如果 A 是实对称矩阵(即 A = A T A = A^T A=AT 且所有元素都是实数),那么:

  • 所有特征值都是实数
  • 特征向量相互正交
  • A 可以被正交对角化

例如,考虑实对称矩阵:

A = [ 2 1 1 2 ] A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} A=[2112]

它的特征值为 λ 1 = 3 λ_1 = 3 λ1=3 λ 2 = 1 λ_2 = 1 λ2=1,都是实数。

4. 疑惑

4.1. A v ⃗ = λ v ⃗ A\vec{v} = λ\vec{v} Av =λv , A是个矩阵,可以让v这个向量变换嘛, 一旦变化不可能相等呀

当矩阵 A 作用在向量 v ⃗ \vec{v} v 上时,通常会改变向量的:

  1. 方向
  2. 大小

image.png

但是特征向量 v ⃗ \vec{v} v 是特殊的!当矩阵 A 作用在特征向量上时,只会改变它的大小(拉伸或压缩),而不改变其方向。这个"拉伸/压缩因子"就是特征值 λ λ λ

让我用一个具体的例子说明:

A = [ 2 1 1 2 ] A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} A=[2112]

这个矩阵的一个特征向量是 v ⃗ = [ 1 1 ] \vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} v =[11],对应的特征值 λ = 3 λ = 3 λ=3

让我们验证 A v ⃗ = λ v ⃗ A\vec{v} = λ\vec{v} Av =λv

[ 2 1 1 2 ] [ 1 1 ] = [ 3 3 ] = 3 [ 1 1 ] \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3\begin{bmatrix} 1 \\ 1 \end{bmatrix} [2112][11]=[33]=3[11]

您看,矩阵 A 作用后:

  • 向量方向没变(还是 [ 1 1 ] \begin{bmatrix} 1 \\ 1 \end{bmatrix} [11] 的方向)
  • 只是大小变成了原来的 3 倍

5. 矩阵特征值 数学例题

例题:找出下面矩阵的所有特征值和对应的特征向量:

A = [ 3 1 1 3 ] A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} A=[3113]

解法步骤:

  1. 建立特征方程 d e t ( A − λ I ) = 0 det(A - λI) = 0 det(AλI)=0

    d e t [ 3 − λ 1 1 3 − λ ] = 0 det\begin{bmatrix} 3-λ & 1 \\ 1 & 3-λ \end{bmatrix} = 0 det[3λ113λ]=0

  2. 计算行列式:

    ( 3 − λ ) ( 3 − λ ) − ( 1 ) ( 1 ) = 0 (3-λ)(3-λ) - (1)(1) = 0 (3λ)(3λ)(1)(1)=0

    ( 3 − λ ) 2 − 1 = 0 (3-λ)^2 - 1 = 0 (3λ)21=0

    λ 2 − 6 λ + 8 = 0 λ^2 - 6λ + 8 = 0 λ26λ+8=0

  3. 求解特征值:
    使用求根公式 λ = − b ± b 2 − 4 a c 2 a λ = \frac{-b \pm \sqrt{b^2-4ac}}{2a} λ=2ab±b24ac

    λ = 6 ± 36 − 32 2 = 6 ± 4 2 = 6 ± 2 2 λ = \frac{6 \pm \sqrt{36-32}}{2} = \frac{6 \pm \sqrt{4}}{2} = \frac{6 \pm 2}{2} λ=26±3632 =26±4 =26±2

    得到: λ 1 = 4 λ_1 = 4 λ1=4, λ 2 = 2 λ_2 = 2 λ2=2

  4. 求对应的特征向量:
    对每个特征值λ,解方程组 ( A − λ I ) v ⃗ = 0 ⃗ (A - λI)\vec{v} = \vec{0} (AλI)v =0

    λ 1 = 4 λ_1 = 4 λ1=4
    [ 3 − 4 1 1 3 − 4 ] [ v 1 v 2 ] = [ 0 0 ] \begin{bmatrix} 3-4 & 1 \\ 1 & 3-4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} [341134][v1v2]=[00]

    { − v 1 + v 2 = 0 v 1 − v 2 = 0 \begin{cases} -v_1 + v_2 = 0 \\ v_1 - v_2 = 0 \end{cases} {v1+v2=0v1v2=0

    得到: v 1 = v 2 v_1 = v_2 v1=v2,取 v 1 ⃗ = [ 1 1 ] \vec{v_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} v1 =[11]

    λ 2 = 2 λ_2 = 2 λ2=2
    [ 1 1 1 1 ] [ v 1 v 2 ] = [ 0 0 ] \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} [1111][v1v2]=[00]

    得到: v 1 = − v 2 v_1 = -v_2 v1=v2,取 v 2 ⃗ = [ 1 − 1 ] \vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} v2 =[11]

最终答案:

  • 特征值: λ 1 = 4 λ_1 = 4 λ1=4, λ 2 = 2 λ_2 = 2 λ2=2
  • 对应的特征向量: v 1 ⃗ = [ 1 1 ] \vec{v_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} v1 =[11], v 2 ⃗ = [ 1 − 1 ] \vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} v2 =[11]

验证:
我们可以验证 A v 1 ⃗ = 4 v 1 ⃗ A\vec{v_1} = 4\vec{v_1} Av1 =4v1

[ 3 1 1 3 ] [ 1 1 ] = [ 4 4 ] = 4 [ 1 1 ] \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4\begin{bmatrix} 1 \\ 1 \end{bmatrix} [3113][11]=[44]=4[11]

6. 矩阵特征值数据例题2

例题:求下列矩阵的特征值和特征向量:

A = [ 2 − 1 0 − 1 2 − 1 0 − 1 2 ] A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} A= 210121012

解法步骤:

  1. 建立特征方程 d e t ( A − λ I ) = 0 det(A - λI) = 0 det(AλI)=0

    d e t [ 2 − λ − 1 0 − 1 2 − λ − 1 0 − 1 2 − λ ] = 0 det\begin{bmatrix} 2-λ & -1 & 0 \\ -1 & 2-λ & -1 \\ 0 & -1 & 2-λ \end{bmatrix} = 0 det 2λ1012λ1012λ =0

  2. 计算行列式:
    使用第一行展开:

    ( 2 − λ ) d e t [ 2 − λ − 1 − 1 2 − λ ] − ( − 1 ) d e t [ − 1 − 1 0 2 − λ ] = 0 (2-λ)det\begin{bmatrix} 2-λ & -1 \\ -1 & 2-λ \end{bmatrix} - (-1)det\begin{bmatrix} -1 & -1 \\ 0 & 2-λ \end{bmatrix} = 0 (2λ)det[2λ112λ](1)det[1012λ]=0

    ( 2 − λ ) [ ( 2 − λ ) ( 2 − λ ) − 1 ] − ( − 1 ) [ ( − 1 ) ( 2 − λ ) − 0 ] = 0 (2-λ)[(2-λ)(2-λ)-1] - (-1)[(-1)(2-λ)-0] = 0 (2λ)[(2λ)(2λ)1](1)[(1)(2λ)0]=0

    ( 2 − λ ) [ ( 2 − λ ) 2 − 1 ] + ( 2 − λ ) = 0 (2-λ)[(2-λ)^2-1] + (2-λ) = 0 (2λ)[(2λ)21]+(2λ)=0

    ( 2 − λ ) [ ( 2 − λ ) 2 − 1 + 1 ] = 0 (2-λ)[(2-λ)^2-1+1] = 0 (2λ)[(2λ)21+1]=0

    ( 2 − λ ) ( λ 2 − 4 λ + 4 ) = 0 (2-λ)(λ^2-4λ+4) = 0 (2λ)(λ24λ+4)=0

  3. 求解特征值:

    ( 2 − λ ) ( λ − 2 ) 2 = 0 (2-λ)(λ-2)^2 = 0 (2λ)(λ2)2=0

    得到: λ 1 = 2 λ_1 = 2 λ1=2 (重根), λ 2 = 2 λ_2 = 2 λ2=2 (重根), λ 3 = 2 λ_3 = 2 λ3=2 (重根)

  4. 求对应的特征向量:
    λ = 2 λ = 2 λ=2,解方程组 ( A − 2 I ) v ⃗ = 0 ⃗ (A - 2I)\vec{v} = \vec{0} (A2I)v =0

    [ 0 − 1 0 − 1 0 − 1 0 − 1 0 ] [ v 1 v 2 v 3 ] = [ 0 0 0 ] \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} 010101010 v1v2v3 = 000

    得到方程组:
    { − v 2 = 0 − v 1 − v 3 = 0 − v 2 = 0 \begin{cases} -v_2 = 0 \\ -v_1 - v_3 = 0 \\ -v_2 = 0 \end{cases} v2=0v1v3=0v2=0

    可得: v 2 = 0 v_2 = 0 v2=0 v 1 = − v 3 v_1 = -v_3 v1=v3

    一个线性无关的特征向量为: v ⃗ = [ 1 0 − 1 ] \vec{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} v = 101

最终答案:

  • 特征值: λ = 2 λ = 2 λ=2 (三重根)
  • 对应的一个特征向量: v ⃗ = [ 1 0 − 1 ] \vec{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} v = 101

特点分析:

  1. 这是一个三重特征值的情况
  2. 虽然是三重特征值,但只有一个线性无关的特征向量
  3. 这种情况下,矩阵 A 不能对角化

7. 矩阵特征例题

例题:求下列矩阵的特征值和特征向量:

A = [ 0 − 2 2 0 ] A = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} A=[0220]

解法步骤:

  1. 建立特征方程 d e t ( A − λ I ) = 0 det(A - λI) = 0 det(AλI)=0

    d e t [ − λ − 2 2 − λ ] = 0 det\begin{bmatrix} -λ & -2 \\ 2 & -λ \end{bmatrix} = 0 det[λ22λ]=0

  2. 计算行列式:

    ( − λ ) ( − λ ) − ( − 2 ) ( 2 ) = 0 (-λ)(-λ) - (-2)(2) = 0 (λ)(λ)(2)(2)=0

    λ 2 + 4 = 0 λ^2 + 4 = 0 λ2+4=0

  3. 求解特征值:

    λ = ± 2 i λ = \pm 2i λ=±2i

    得到: λ 1 = 2 i λ_1 = 2i λ1=2i, λ 2 = − 2 i λ_2 = -2i λ2=2i

  4. 求对应的特征向量:

    λ 1 = 2 i λ_1 = 2i λ1=2i,解方程组:
    [ − 2 i − 2 2 − 2 i ] [ v 1 v 2 ] = [ 0 0 ] \begin{bmatrix} -2i & -2 \\ 2 & -2i \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} [2i222i][v1v2]=[00]

    得到: − 2 i v 1 − 2 v 2 = 0 -2iv_1 - 2v_2 = 0 2iv12v2=0

    解得: v 1 = 1 v_1 = 1 v1=1, v 2 = i v_2 = i v2=i

    因此, v 1 ⃗ = [ 1 i ] \vec{v_1} = \begin{bmatrix} 1 \\ i \end{bmatrix} v1 =[1i]

    λ 2 = − 2 i λ_2 = -2i λ2=2i,类似可得:
    v 2 ⃗ = [ 1 − i ] \vec{v_2} = \begin{bmatrix} 1 \\ -i \end{bmatrix} v2 =[1i]

最终答案:

  • 特征值: λ 1 = 2 i λ_1 = 2i λ1=2i, λ 2 = − 2 i λ_2 = -2i λ2=2i
  • 对应的特征向量:
    • v 1 ⃗ = [ 1 i ] \vec{v_1} = \begin{bmatrix} 1 \\ i \end{bmatrix} v1 =[1i]
    • v 2 ⃗ = [ 1 − i ] \vec{v_2} = \begin{bmatrix} 1 \\ -i \end{bmatrix} v2 =[1i]

几何意义:

  1. 这个矩阵代表平面上的旋转变换
  2. 虚特征值表明这是一个旋转矩阵
  3. 旋转角度可以从特征值求出: θ = arctan ⁡ ( 2 ) θ = \arctan(2) θ=arctan(2)

让我们创建一个可视化来展示这个旋转变换:

image.png

image.png

image.png

这个可视化展示了向量在该矩阵作用下的旋转效果。蓝色向量随时间旋转,展示了矩阵 A 的作用效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Agent首席体验官

您的打赏是我继续创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值