1. 线性代数中的单位矩阵
在线性代数中,当我们看到方程 A B = E AB = E AB=E 时, E E E 通常表示单位矩阵(Identity Matrix)。
单位矩阵的定义
单位矩阵是一个特殊的方阵,其主对角线(从左上角到右下角的对角线)上的元素全为1,而其余元素全为0。对于 n × n n \times n n×n 的单位矩阵,可以表示为:
![[Pasted image 20250301082401.png]]
常见的记号有 E E E、 I I I 或 I n I_n In(其中 n n n 表示矩阵的阶数)。
单位矩阵的性质
单位矩阵具有以下重要性质:
-
乘法单位元:对于任何 n × n n \times n n×n 矩阵 A A A,有 A ⋅ E = E ⋅ A = A A \cdot E = E \cdot A = A A⋅E=E⋅A=A。这类似于实数中的1,因为任何数乘以1等于它本身。
-
逆矩阵关系:如果 A B = E AB = E AB=E,那么矩阵 B B B 是矩阵 A A A 的逆矩阵,通常记作 B = A − 1 B = A^{-1} B=A−1。同样地, A A A 也是 B B B 的逆矩阵,即 A = B − 1 A = B^{-1} A=B−1。
-
幂运算:单位矩阵的任何幂都等于它本身,即 E n = E E^n = E En=E,对所有正整数 n n n 成立。
-
行列式: n n n 阶单位矩阵的行列式等于1,即 ∣ E ∣ = 1 |E| = 1 ∣E∣=1。
-
特征值:单位矩阵的所有特征值都是1。
A B = E AB = E AB=E 的含义
方程 A B = E AB = E AB=E 表明:
- 矩阵 A A A 和 B B B 互为逆矩阵,即 B = A − 1 B = A^{-1} B=A−1 且 A = B − 1 A = B^{-1} A=B−1。
- 矩阵 A A A 和 B B B 都是可逆(非奇异)的。
- A A A 和 B B B 必须是同阶方阵。
这个关系在解线性方程组、矩阵求逆和线性变换理论中有重要应用。
示例
如果有一个 2 × 2 2 \times 2 2×2 的矩阵 A = ( 2 1 1 1 ) A = \begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix} A=(21 11),要找到满足 A B = E AB = E AB=E 的矩阵 B B B,我们需要计算 A A A 的逆矩阵:
![[Pasted image 20250301082421.png]]
2. 单位矩阵为啥是对角线是1, 而不是全是1
单位矩阵的对角线元素是1而非所有元素都是1,这是由它的数学目的和功能决定的。
单位矩阵的设计目的
单位矩阵( I I I)被设计为矩阵乘法中的"恒等元",类似于实数乘法中的1或加法中的0。对于任何矩阵 A A A,我们需要一个特殊矩阵 I I I使得 A I = I A = A AI = IA = A AI=IA=A。这个性质要求单位矩阵必须是对角线为1、其余为0的形式。
数学原因
假设我们有一个 n × n n \times n n×n矩阵 A A A和单位矩阵 I I I,矩阵乘法的定义是:
( A I ) i j = ∑ k = 1 n a i k ⋅ I k j (AI)_{ij} = \sum_{k=1}^{n} a_{ik} \cdot I_{kj} (AI)ij=k=1∑naik⋅Ikj
为了保证 A I = A AI = A AI=A,我们需要:
∑ k = 1 n a i k ⋅ I k j = a i j \sum_{k=1}^{n} a_{ik} \cdot I_{kj} = a_{ij} k=1∑naik⋅Ikj=aij
这只有在 I k j = 1 I_{kj} = 1 Ikj=1当 k = j k = j k=j时,且 I k j = 0 I_{kj} = 0 Ikj=0当 k ≠ j k \neq j k=j时才成立。这正是对角线为1、其余为0的定义。
实例对比
考虑一个全是1的 2 × 2 2 \times 2 2×2矩阵:
![[Pasted image 20250301082737.png]]
![[Pasted image 20250301082756.png]]
显然 A J ≠ A AJ \neq A AJ=A,所以全1矩阵不能作为单位矩阵。
而对角线矩阵:
![[Pasted image 20250301082816.png]]
这证明了对角线为1的矩阵才能满足单位矩阵的基本性质。
几何解释
从几何角度看,单位矩阵代表"不做任何变换"的线性变换。当向量与单位矩阵相乘时,它们保持不变。如果单位矩阵是全1矩阵,那么它会使所有向量映射到一条线上,这显然改变了向量,不能称为"恒等变换"。