论文阅读笔记 | MLP系列——CycleMLP


如有错误,恳请指出。


paper:CycleMLP: A MLP-like Architecture for Dense Prediction
code:https://github.com/ShoufaChen/CycleMLP
在这里插入图片描述
摘要:

CycleMLP是AS-MLP之外的另外一个可以作为通用骨架的MLP架构(AS-MLP是首个迁移到下游任务的 MLP 架构),MLP-Mixer, ResMLP 与gMLP架构与图像大小相关,因为其不能作为下游任务的通用骨干。

与现在的MLP方法相比,CycleMLP有两个优点:
1)可以处理各种图像大小
2)利用局部窗口实现图像大小的线性计算复杂度。相比之下,以往的mlp具有二次计算复杂度,因为它们空间上的全连接。

作者扩展了MLP架构的适用性,使其成为密集预测任务的通用主干。性能效果:

  • 83.2% accuracy on ImageNet-1K classification ( Swin Transformer 83.3%)
  • achieves 45.1 mIoU on ADE20K val(Swin 45.2 mIOU)

1. Introduction


尽管在视觉识别任务中得到了很好的结果,但由于两个原因,这些mlp类模型不能用于其他下游任务(比如目标检测与语义分割):
1)这样的模型由具有相同架构的块组成,导致在低分辨率下具有单一尺度的特征。因此,非层次结构使得模型无法提供金字塔特征表示。
2)这些模型无法处理灵活的输入尺度,因此在训练和验证阶段都需要一个固定的输入规模。
3)Spatial FC的计算复杂度是图像大小的平方,这使得现有的mlp类模型难以在高分辨率图像上实现。

对于第一个问题,作者构建了一个层次结构来生成金字塔特征表示。对于第二三个问题,作者提出了一个全连接层的新变种,命名为循环全连接层(Cycle FC),Cycle FC能够处理可变的图像尺度,对图像大小具有线性的计算复杂度。

对于Spatial FC来说,由于需要限定patch的HW大小,所以无法做到可变处理,但是感受野较大,复杂度也较大;而Channel FC,由于线性投影的维度是可以设定的,没有信息交互的过程,但是复杂度较小,所以可以做到可变处理。

为此,Cycle FC的出发点是继承这个优点,接受任意分辨率的输入和线性计算复杂度,同时扩大上下文聚合的感受野。为此,Cycle FC沿着通道维度以周期性的方式采样点。通过这种方式,Cycle FC具有与Channels FC相同的复杂性,同时增加了感受野范围。使用Cycle FC代替Spatial FC进行空间上下文聚合(即token-mixing操作),并构建了一系列mlp类模型用于识别和密集预测任务。
在这里插入图片描述

2. CycleMLP Architecture


2.1 Overall Architecture

类似的,对于输入图像为HxWxC的图像,通过带有重叠的卷积变成一系列的patch(卷积核为7,步长为4,带重叠的卷积效果会更好),然后对channel进行一个线性投影成(H/4)x(W/4)xC。然后,依次在patch tokens上应用几个Cycle FC block,具有相同架构的block被堆叠成一个Stage。在每个Stage中维护token的数量(特征规模)。而在每个阶段转换中,在tokens数量减少的同时,所处理的tokens的channel维度得到扩展。通过该策略有效降低了空间分辨率的复杂性。

2.2 CycleFC Block

Cycle FC block由三个并行的Cycle FC算子组成,然后是一个具有两个线性层和中间一个GELU非线性的channel mlp。
在这里插入图片描述
Channel FC由特定层的内外通道维度配置。它的结构与图像的尺度无关。因此它是一种尺度不可知的操作,可以处理输入图像的可变尺度,这对于密集预测任务是必不可少的。此外,信道FC的另一个优点是它对图像尺度的线性计算复杂度。然而,它的感受野有限,不能聚合足够的上下文,Channel FC由于缺乏上下文信息而产生较差的结果。

为了在保持计算复杂度的同时扩大感受野,Cycle FC被设计成与Channels FC一样沿着Channels维度进行全连接,但是并不是采样点都位于相同空间位置,而是以阶梯式风格采样点。

本质上还是一个移动特征图的操作
在这里插入图片描述
ps:当伪内核大小配置为1×1时,Cycle FC退化为普通Channels FC

3. Result


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 多层感知器(MLP)研究论文推荐 多层感知器作为神经网络的基础结构之一,在许多领域得到了广泛应用。为了帮助定位与MLP相关的高质量学术资源,以下是几个建议的研究方向和具体论文: #### 1. MLP理论基础与发展历程 了解MLP的基本原理及其发展历程有助于深入理解这一模型的工作机制和发展趋势。可以关注早期关于反向传播算法应用于MLP训练的经典文献。 #### 2. MLP在不同应用场景中的优化改进 随着技术进步,研究人员不断探索如何通过架构调整、激活函数选择等方式来提高MLP性能。例如,有研究表明即使只有一个隐藏层的MLP也能很好地拟合复杂函数[^2];而对于更复杂的任务,则可能需要更深的网络结构以达到更好的参数效率并实现更高的准确性。 #### 3. 结合其他先进组件构建混合型深度学习体系 现代研究往往不再局限于单一类型的网络单元,而是尝试将MLP与其他高效部件如卷积核、循环单元等相结合形成新的计算框架。比如,在某些视觉识别任务中,可以看到基于Transformer编码器内的MLP模块设计[^1]。 #### 4. 特定行业应用案例分析 根据不同行业的特点定制化的MLP解决方案也值得探讨。这包括但不限于医疗影像诊断、自然语言处理等领域内利用MLP完成特定功能的例子。 针对上述各个方面的具体内容,可以通过Google Scholar或其他专业数据库进行检索,输入关键词组合如“Multi-Layer Perceptron”,加上感兴趣的子主题词(如optimization, image recognition, NLP等),从而找到最前沿的相关研究成果。 ```python import requests from bs4 import BeautifulSoup def search_papers(query): url = f"https://scholar.google.com/scholar?q={query.replace(' ', '+')}" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') titles = [] for item in soup.select('.gs_rt'): title = item.find('a').text if item.find('a') else item.text titles.append(title) return titles[:5] papers = search_papers("Multi-Layer Perceptron") for paper in papers: print(paper) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clichong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值