前言
手写体数字识别是图像识别学科下的一个分支,是图像处理和模式识别研究领域的重要应用之一,并且有很强的通用性。由于手写体数字的随意性很大,如笔画粗细、字体大小、倾斜角度等因素都有可能直接影响到字符的识别准确率,所以手写体数字识别是一个很有挑战性的课题。在过去的数十年中,研究者们提出了许多识别方法,并取得了一定的成果。手写体数字识别的实用性很强,在大规模数据统计如例行年检、人口普查、财务、税务、邮件分拣等应用领域都有广阔的应用前景。
本案例讲述了图像中手写阿拉伯数字的识别过程,对手写数字识别的基于统计的方法进行了简要介绍和分析,并通过开发一个小型的手写体数字识别系统进行实验。手写数字识别系统需要实现手写数字图像的读取功能、特征提取功能、数字的模板特征库的建立功能及识别功能。
一、理论基础
1.算法流程
首先,读入手写数字图片进行图像归一化处理,统一大小,默认为 24×24 图像块,并通过ostu 算法进行二值化;其次,对二值化图像进行图像细化等形态学操作,并按照算法的要求进行特征提取;最后,载入模板矩阵进行对比,选用欧式距离测度并得到识别结果。其算法流程图如图 8-1 所示。
本文介绍了一个基于知识库的手写体数字识别系统,涵盖了理论基础和程序实现。理论部分涉及图像归一化、特征提取和模式识别,采用欧式距离进行模板匹配。在MATLAB中,通过图像处理、特征提取和模式识别步骤实现识别,特征向量由交点和端点数量构成。系统使用200个训练样本构建模板库,未来可考虑增加样本或采用神经网络提高识别率。
订阅专栏 解锁全文
1464

被折叠的 条评论
为什么被折叠?



