基于matlab的手写体数字识别

42 篇文章 69 订阅 ¥49.90 ¥99.00
本文介绍了一个基于知识库的手写体数字识别系统,涵盖了理论基础和程序实现。理论部分涉及图像归一化、特征提取和模式识别,采用欧式距离进行模板匹配。在MATLAB中,通过图像处理、特征提取和模式识别步骤实现识别,特征向量由交点和端点数量构成。系统使用200个训练样本构建模板库,未来可考虑增加样本或采用神经网络提高识别率。
摘要由CSDN通过智能技术生成


前言

手写体数字识别是图像识别学科下的一个分支,是图像处理和模式识别研究领域的重要应用之一,并且有很强的通用性。由于手写体数字的随意性很大,如笔画粗细、字体大小、倾斜角度等因素都有可能直接影响到字符的识别准确率,所以手写体数字识别是一个很有挑战性的课题。在过去的数十年中,研究者们提出了许多识别方法,并取得了一定的成果。手写体数字识别的实用性很强,在大规模数据统计如例行年检、人口普查、财务、税务、邮件分拣等应用领域都有广阔的应用前景。
本案例讲述了图像中手写阿拉伯数字的识别过程,对手写数字识别的基于统计的方法进行了简要介绍和分析,并通过开发一个小型的手写体数字识别系统进行实验。手写数字识别系统需要实现手写数字图像的读取功能、特征提取功能、数字的模板特征库的建立功能及识别功能。


一、理论基础

1.算法流程

首先,读入手写数字图片进行图像归一化处理,统一大小,默认为 24×24 图像块,并通过ostu 算法进行二值化;其次,对二值化图像进行图像细化等形态学操作,并按照算法的要求进行特征提取;最后,载入模板矩阵进行对比,选用欧式距离测度并得到识别结果。其算法流程图如图 8-1 所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值