
原论文摘要
在本文中,描述了一种新的移动架构——MobileNetV2,它在多个任务和基准测试中提升了移动模型的最先进性能,并在不同模型规模中表现出色。还介绍了在一种称为SSDLite的新框架中,将这些移动模型高效应用于目标检测的方法。此外,我们展示了如何通过一种简化的DeepLabv3形式(称之为Mobile DeepLabv3)构建移动语义分割模型。MobileNetV2基于一种倒残差结构,其中快捷连接位于薄瓶颈层之间。中间的扩展层使用轻量级深度卷积来过滤特征,作为非线性源。此外,为了保持表示能力,在窄层中移除非线性是非常重要的,这能够提升模型性能。
介绍
MobileNetV2与ShuffleNet等类似,能够进一步提高性能,同时提供对其内部运作的见解。网络设计基于MobileNetV1,它保留了其简洁性,不需要任何特殊操作符,同时显著提高了其准确性,在多项移动应用的图像分类和检测任务中达到了最先进的水平。
下图为不同架构的卷积块比较。ShuffleNet 使用分组卷积 和通道洗牌,并且采用了传统的残差方法,其中内部块的宽度小于输出块。

理论详解可以参考链接:论文地址
下文都是手把手教程,跟着操作即可添加成功
订阅专栏 解锁全文
344

被折叠的 条评论
为什么被折叠?



