文章目录
前言
DCNv2对原始的DCNv1进行了改进,可变形卷积网络的卓越性能源于其适应对象几何变化的能力。通过对其自适应行为的检查,虽然对其神经特征的空间支持比常规的ConvNets更接近于对象结构,但这种支持可能远远超出感兴趣区域,导致特征受到不相关图像内容的影响。为了解决这个问题,我们提出了一种可变形卷积网的重新表述,通过提高建模能力和更强的训练,提高了其专注于相关图像区域的能力。通过更全面地集成网络中的可变形卷积,并引入扩展变形建模范围的调制机制,增强了建模能力。
论文地址:链接: link
一、YOLOv8原始版本代码下载
源码下载地址 :链接: link
源码提取码: rpe7
二、DCNv2代码
class