YOLOv11改进,YOLOv11引入SCAM)空间上下文感知模块+DySample超轻量级且有效的动态上采样器(ICCV2023),提高模型在遥感小目标和低分辨率检测能力


在这里插入图片描述


理论介绍

DySample 通过动态采样来实现有效的特征上采样。与传统的基于卷积的动态上采样不同,DySample 回归到上采样的本质,即点采样,来提高资源效率和易实现性。DySample 核心思想:

  • 点采样观点:DySample 将上采样视为点采样过程,使用内容感知的采样点从连续的特征图中重新采样,比动态卷积更为轻量。
  • 高效实现:DySample 避免了复杂的自定义 CUDA 实现,减少了参数、浮点运算(FLOPs)、显存占用和延迟,在语义分割、目标检测、实例分割、全景分割和单目深度估计等密集预测任务中表现出色。

DySample 基于采样的动态上采样和模块设计如下图(摘自论文):
在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址


# 理论介绍

SCAM 通过全局上下文信息的建模来增强特征表示,从而改善小目标检测的性能,在跨越空间和通道构建全局上下文关系,以增强小目标和背景之间的区分。具体实现方法包括以下几点:

  • 全局平均池化 (GAP) 和全局最大池化 (GMP):SCAM 使用 GAP 和 GMP 来整合全局信息。这些池化操作能够引导像素学习空间和通道之间的关系。
  • 线性变换:通过 1x1 卷积生成特征图的线性变换结果,称为 value。
  • 简化的乘法操作:使用 1x1 卷积简化查询和键的乘法操作,称为 QK。
  • 矩阵乘法:第一支路和第三支路分别与第二支路进行矩阵乘法操作,生成跨通道和空间的上下文信息。
  • 广播哈达玛积:最终通过广播哈达玛积(逐元素乘法)来融合这两个分支的结果,得到 SCAM 的输出。
    SCAM结构如下所示(摘自论文):
    在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址</

### YOLOv11 Model Information and Details for `yolov11n.pt` File The `yolov11n.pt` file represents a pre-trained PyTorch model of the YOLOv11 architecture, specifically tailored to be lightweight yet effective in object detection tasks. This particular version integrates several innovative modules that enhance its performance while maintaining computational efficiency. #### Key Components of YOLOv11 Architecture - **Feature Enhancement Module (FEM)**: Enhances feature extraction capabilities by focusing on critical features within images[^1]. - **Feature Fusion Module (FFM)**: Combines multi-scale context information effectively through advanced fusion techniques, improving overall accuracy. - **Spatial Context Awareness Module (SCAM)**: Incorporates spatial relationships between objects, aiding in more accurate localization and classification. For the light-weight variant denoted as `yolov11n`, these components are optimized further: ```python import torch model = torch.hub.load('ultralytics/yolov11', 'custom', path='path/to/yolov11n.pt') ``` This code snippet demonstrates how one can load the custom YOLOv11 model from a `.pt` file using TorchHub. The specific configuration parameters such as input size, number of classes, etc., would typically be defined inside the YAML configuration associated with this model type. #### Configuration Example (`yolov11-FFCA.yaml`) To configure the environment properly before running inference or training sessions, users should refer to an example setup script like so: ```yaml # yolov11-FFCA.yaml train: imgsz: 640 batch_size: 16 epochs: 300 ... ``` Such configurations ensure optimal utilization of resources during both training and deployment phases. --related questions-- 1. What is the significance of each module introduced in YOLOv11? 2. How does FFM contribute to better object detection results compared to previous versions? 3. Can SCAM improve small object recognition significantly over traditional methods? 4. Are there any notable differences when deploying YOLOv11 models across various hardware platforms?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值