Yolo系列再次更新——清华发布Yolov10端到端实时对象检测模型

前期我们刚介绍过Yolo系列模型,还以为Yolov9刚刚发布,也许今年不会再有什么更新。但是没有想到打脸如此之快,Yolov10端到端实时对象检测模型强势回归发布。
Yolov10端到端实时对象检测
YOLOv10 是清华大学研究人员在YOLO软件包的基础上,引入了一种新的实时目标检测方法,解决了YOLO 以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10 显著降低了计算开销,并实现了最先进的性能。大量实验证明,YOLOv10 在多个模型尺度上实现了卓越的精度以及速度。

模型框架
实时物体检测旨在以较低的延迟准确预测图像中的物体类别和位置。YOLO 系列在性能和效率之间取得了平衡,因此一直处于这项研究的前沿。然而,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能研究所

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值