前期我们刚介绍过Yolo系列模型,还以为Yolov9刚刚发布,也许今年不会再有什么更新。但是没有想到打脸如此之快,Yolov10端到端实时对象检测模型强势回归发布。
Yolov10端到端实时对象检测
YOLOv10 是清华大学研究人员在YOLO软件包的基础上,引入了一种新的实时目标检测方法,解决了YOLO 以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10 显著降低了计算开销,并实现了最先进的性能。大量实验证明,YOLOv10 在多个模型尺度上实现了卓越的精度以及速度。
模型框架
实时物体检测旨在以较低的延迟准确预测图像中的物体类别和位置。YOLO 系列在性能和效率之间取得了平衡,因此一直处于这项研究的前沿。然而,