∑ n = 0 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ⋯ + a n ( x − x 0 ) n + ⋯ , ( 1 ) \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+\cdots, \quad\quad(1) n=0∑∞an(x−x0)n=a0+a1(x−x0)+a2(x−x0)2+⋯+an(x−x0)n+⋯,(1)
下面将着重讨论 x 0 = 0 x_{0}=0 x0=0, 即
∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n + ⋯ ( 2 ) \sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots \quad\quad (2) n=0∑∞anxn=a0+a1x+a2x2+⋯+anxn+⋯(2)
的情形,因为只要把 (2) 中的 x x x 换成 x − x 0 x-x_{0}