数学分析(十四)-幂级数1-幂级数1-幂级数的收敛区间2:幂级数的收敛性【若Σaₙxⁿ在x=X̄≠0处收敛,则对任意满足|x|<|X̄|的x,幂级数都收敛且绝对收敛;收敛半径/区间:R,(-R,R)】

本文探讨了幂级数的收敛性,特别是阿贝尔定理的应用。根据定理,若幂级数在某点收敛,则在该点绝对收敛,且在满足一定条件的区间内也绝对收敛;相反,如果在某点发散,那么在满足特定不等式的点上也将发散。收敛半径R决定了幂级数的收敛区间,如(R,-R)。" 110247595,9331902,JavaScript实现图片轮播效果,"['JavaScript', '前端开发', '图片轮播', '动画效果']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

∑ n = 0 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ⋯ + a n ( x − x 0 ) n + ⋯   , ( 1 ) \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+\cdots, \quad\quad(1) n=0an(xx0)n=a0+a1(xx0)+a2(xx0)2++an(xx0)n+,(1)

下面将着重讨论 x 0 = 0 x_{0}=0 x0=0, 即

∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n + ⋯ ( 2 ) \sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots \quad\quad (2) n=0anxn=a0+a1x+a2x2++anxn+(2)

的情形,因为只要把 (2) 中的 x x x 换成 x − x 0 x-x_{0} xx0, 就得到 (1).


首先讨论幂级数 (2) 的收敛性问题. 显然任意一个幂级数 (2) 在 x = 0 x=0 x=0 处总是收敛的. 除此之外, 它还在哪些点收敛? 我们有下面重要的定理.

定理 14. 1 (阿贝尔定理)

(1) 若幂级数 ∑ n = 0 ∞ a n x n \begin{aligned}\sum_{n=0}^{\infty} a_{n} x^{n}\en

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值