目录
分布图:F分布的形状依赖于分子和分母的自由度,分布不对称,在第一象限
预备知识
1》求解数学期望
2》数学期望的性质
一、正态分布
正态分布(Normal distribution)又名高斯分布(Gaussiandistribution),若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2);其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。我们通常所说的 标准正态分布是 μ = 0,σ = 1的正态分布; 详细解释如下:
均值
方差
正态分布常用函数
【Matlab】正态分布常用函数normpdf_normcdf_norminv_normrnd_normfit_weixin_30648963的博客-CSDN博客
相关概念:
1、正态分布的3σ准则是什么?
正态分布的3σ准则是:若X服从正态分布N(μ,σ^2),则X取值在区间(μ-3σ,μ+3σ)之外的概率很小,是小概率事件,通常认为在一次试验里是不会发生的。正态分布是高斯在研究误差时所发现的分布。若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。
- 数值分布在(μ-σ,μ+σ)中的概率为0.6826;
- 数值分布在(μ-2σ,μ+2σ)中的概率为0.9544;
- 数值分布在(μ-3σ,μ+3σ)中的概率为0.9974;
可以认为,Y 的取值几乎全部集中在(μ-3σ,μ+3σ)区间内,超出这个范围的可能性仅占不到0.3%。
二、卡方分布
卡方分布在线计算网址:
若n个 相互独立 的随机变量 ξ₁、ξ₂、……、ξn ,均服从 标准正态分布N(0,1),则这n个服从标准正态分布的随机变量的 平方和 构成一新的随机变量,其分布规律称为卡方分布(chi-squaredistribution);其中参数n称为自由度(通俗讲,样本中独立或能自由变化的自变量的个数,称为自由度),正如正态分布中均值或方差不同就是另一个正态分布一样,自由度不同就是另一个分布;其表达如下:
分布通过检验统计量来比较 期望结果和实际结果 之间的差别,然后得出观察结果发生的概率。
其中 O代表观察值,E代表期望值;这个检验统计量提供了一种期望值与观察值之间差异的度量办法。最后反映在数值的大小上。那么,当大到什么程度,差异才算显著呢? 这要根据自由度,设定的显著性水平查找分布表来判定。对于卡方分布的具体使用,我认为其有三要素:一个公式,一张分布表,一张概率密度图;下图中n代表自由度,纵轴为概率值,横轴为卡方值。自由度越大,卡方分布的外形越接近正态分布;下表即为卡方分布表,第一列为自由度 (n),第一行为显著水平 (α),据此可以查找到临界值,如果检验统计量大于临界值,则检验统计量就位于拒绝域以内,说明观察结果与期望结果之间的差异显著 (也是完好性判断的本质)
概率密度函数如下:
https://wiki.mbalib.com/wiki/显著性水平
注意:显著水平 α=0.05 是根据95% 可信区间确定的,根据不同的自由度,可以通过查卡方分布界值表;也可以确定界值,再看 显著性水平
什么是显著水平 ? (其实就是 误警率)
显著水平的理解
非中心卡方分布
-
三、指数分布
四、F分布
F分布定义:
设X、Y为两个独立的随机变量,X服从自由度为k1的卡方分布,Y服从自由度为k2的卡方分布,
F-分布是这两个卡方分布变量X、Y除以各自的自由度后的比率的分布: