联邦学习与计算机视觉、自然语言处理及推荐系统

《联邦学习》(杨强等著)读书笔记

1、联邦学习与计算机视觉

计算机视觉是一门教授机器从图像中学习知识的科学。它是一种利用计算机和相关设备,从采集的图像和视频中学习三位信息的生物视觉模拟。换言之,我们为计算机配置了“眼睛”(摄像头)和“大脑”(算法),使得计算机可以感知到世界。本质上,CV的核心是研究如何组织输入图像的信息、检测对象和场景,然后解释这些图像的内容。从解决具体问题的角度出发,CV的研究可以分为目标检测、语义分割、运动跟踪、三维重建、视觉回答和动作识别等几个方面。

虽然联邦学习在解决计算机视觉问题方面进行了一系列新颖的研究,但是深度卷积神经网络模型的庞大规模阻碍了联邦学习在移动或嵌入式设备中的实际应用。联邦学习将模型训练带到了用户端。一方面,这消除了聚合用户私有数据的需要。另一方面,这对通常只有有限算力的用户设备带来了巨大的挑战。挑战总是伴随着机遇,除了推动英伟达、苹果、华为和小米等移动设备制造商去开发专门用于DNN训练的硬件,在智能设备应用上不断提高的需求也会促进如参数修剪、低秩分解、知识蒸馏等模型压缩技术的发展,从而节省计算资源和通信代价。

联邦学习最有前途、最具挑战性的应用之一可能是基于分散在各种设备上的异构数据而构建的CV驱动自动驾驶系统。长期以来,自动驾驶汽车制造商一直在寻找稳定而可靠的方法,以确保在任何情况下司机的人身安全。尽管如此,正如你可能听说过的,只用少数贴纸就可以欺骗DNN,使其对交通标志进行错误的分类。你可能会将此归咎于神经网络算法的局限性。然而,我们认为丰富车辆进行决策所依据的信息源将更有利于司机的安全。当人类在开车期间进行判断时,会使用所有的生理感官,包括视觉、触觉、听觉甚至嗅觉。类似地,一辆自动驾驶汽车应该通过与摄像头、雷达和激光雷达等各种设备进行协调来操纵行驶,这些设备不仅来自汽车自己,也来自周围的汽车,甚至是路上的监视器。

通过将各种设备联合起来,协作地构建共享和定制化的模型,联邦学习可以为自主驾驶系统提供很大助力。这些模型高度信息化,能够做出明智和考虑全面的决策。然而,这不可能在一天之内实现。不同于其他可以有效地从分布式和异构的数据中(如图像、声音信号、其他数值数据)学习模式的智能算法,对于联邦学习,还应定制先进的通信协议,以支持各种设备之间的实时交互,也需要高效的安全协议以保证司机和乘客的个人数据的隐私和安全。

2、联邦学习与自然语言处理

随着DNN的发展,自然语言处理模型在诸多领域的任务中取得了瞩目的成就。在这些神经网络模型中,能够有效处理序列信息的循环神经网络(RNN)极大地提高了语言建模的性能。著名的RNN变体有长短时记忆(LSTM)和门控循环单元(GRU)。

然而,这些方法需要将许多用户生成的训练数据聚合到一个中央存储站点中。在真实的场景中,用户的自然语言数据是敏感的,可能包含隐私内容。因此,为了在保护用户隐私的同时,仍然能够建立健壮的NLP模型,我们可以使用联邦学习技术。

在NLP领域中,最主要的方法是监督学习。为了在未遇见过的数据上得到良好的泛化性能,监督学习对于每一个新场景都需要足够多的标注训练数据。手工标注每一条训练数据毫无疑问将耗费大量时间,并且工作非常繁重枯燥。联邦学习通过利用来自许多参与方的数据,可以在一定程度上解决这个问题。然而,对于标注数据机器稀缺的场景,所有带标记的和不带标记的可用数据都应该被利用起来。

联邦学习与无监督学习、半监督学习或迁移学习的结合是解决数据稀缺问题的一个很有市场的研究方向。尤其是在NLP领域,大量数据都是未经过标注的。如何有效地利用这些数据,目前已是一个有趣而富有挑战性的研究课题。研究人员在跨语言学习、多任务学习及多源域适应等非联邦学习环境中已经开展了许多创新型的研究工作。在联邦学习设定下,如何有效地利用未标注数据将是更富有挑战性的课题。例如,在分布式环境中,我们需要确定如何从未标注数据中学习可迁移或可分离表征,同时需要保护参与方的隐私安全。此外,我们需要仔细设计或选择安全协议,从而在安全和效率之间达到一种平衡。在发展联邦学习的过程中,我们一定还会遭遇许多其他的挑战和困难。但是,我们设想基于联邦学习的NLP的发展将会显著地推动人工智能在诸多行业地应用。

3、联邦学习与推荐系统

推荐系统是一种信息过滤工具,可以利用整个社区的用户画像和习惯给特定用户呈现其可能感兴趣的最相关内容。一个有效的推荐系统包含三个主要功能:

  1. 克服信息过载问题。

  1. 提供定制化推荐。

  1. 合理利用资源。

一个高效的推荐系统对平台和公司都有好处。用户更有可能根据他们的偏好来点击或购买被推荐的商品,并且会重新访问那些更了解他们的网站。总之,推荐系统在各种信息检索系统中都发挥着至关重要的作用,可以促进业务的发展和决策的制定。

然而,在推荐系统中,仍然有许多尚未解决的问题,冷启动和用户数据隐私是其中的两个主要问题。用联邦学习同时解决这两个问题是可行的。假设我们正通过联邦学习,用多方数据来训练一个全局模型。对于冷启动问题,我们可以从其他参与方借鉴相关信息和知识,以帮助对新商品进行评分或对新用户进行预测。对于数据隐私问题,用户的私有数据被保存在客户端设备中,只有更新的模型才会通过安全协议上传。此外,联邦学习将模型的学习过程分布到各个客户端上,大大降低了中央服务器的运算压力。

我们可以看到,研究人员在结合联邦学习和推荐系统等方面进行了一些创新性的研究工作,但这个领域仍有许多空白需要填补。一个普遍的问题是:建立实用的隐私保护和安全的推荐系统需要什么?我们怎样才能建立这些系统?该问题可以进一步细分为几个具体的方面:如何在保护数据安全和隐私的同时,达到高准确度和低通信成本?我们应该选择哪种安全协议?哪种推荐算法更适用于联邦学习?

这里提出了一些未来可能的研究方向。首先,不完整的数据会在多大程度上影响推荐系统的性能?换句话说,我们需要从用户那里收集多少数据,才能建立一个精确的推荐系统。其次,传统的推荐器会利用用户的社交数据、时空数据等,然而目前还不清楚这些数据中哪一部分更有用。最后,联邦学习框架与传统的推荐系统的设定有很大不同。因此,如何在联邦学习框架下,设计高效并且精准的推荐算法也是一项很有挑战性的研究工作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值