矩阵论——线性空间

1. 线性空间

线性空间是线性代数最基本的概念之一,也是学习矩阵论的重要基础。

1.1 定义

定义1.1:设 V V V 是一个非空集合 ,它的元素用 x , y , z \boldsymbol{x},\boldsymbol{y},\boldsymbol{z} xyz 等表示,并称之为向量; K K K 是一个数域 ,它的元素用 k , l , m k,l,m klm 等表示。如果 V V V 满足下列条件:

  1. V V V 中定义一个加法 运算,即当 x , y ∈ V \boldsymbol{x},\boldsymbol{y}\in V x,yV 时,有唯一的和 x + y ∈ V \boldsymbol{x}+\boldsymbol{y}\in V x+yV,且加法运算满足下列性质:
    1)结合律 x + ( y + z ) = ( x + y ) + z \boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})=(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z} x+(y+z)=(x+y)+z
    2)交换律 x + y = y + x \boldsymbol{x}+\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{x} x+y=y+x
    3)存在零元素0,使 x + 0 = x \boldsymbol{x}+\boldsymbol{0}=\boldsymbol{x} x+0=x
    4)存在负元素,即对任一向量 x ∈ V \boldsymbol{x} \in V xV,存在向量 y ∈ V \boldsymbol{y}\in V yV,使 x + y = 0 \boldsymbol{x}+\boldsymbol{y}=\boldsymbol{0} x+y=0,则称 y \boldsymbol{y} y x \boldsymbol{x} x 的负元素,记为一 x \boldsymbol{x} x,于是有 x + ( − x ) = 0 \boldsymbol{x}+(-\boldsymbol{x})=\boldsymbol{0} x+(x)=0 (注:此处的0为零元素)

  2. V V V 中定义 数乘 (数与向量的乘法)运算,即当 x ∈ V \boldsymbol{x} \in V xV k ∈ K k\in K kK 时,有唯一的 k x ∈ V k\boldsymbol{x} \in V kxV,且数乘运算满足下列性质:
    5)数因子分配律 k ( x + y ) = k x + k y k(\boldsymbol{x}+\boldsymbol{y})=k\boldsymbol{x}+k\boldsymbol{y} k(x+y)=kx+ky
    6)分配律 ( k + l ) x = k x + l x (k+l)\boldsymbol{x}=k\boldsymbol{x}+l\boldsymbol{x} (k+l)x=kx+lx
    7)结合律 k ( l x ) = ( k l ) x k(l\boldsymbol{x})=(kl)\boldsymbol{x} k(lx)=(kl)x
    8) 1 x = x 1\boldsymbol{x}=\boldsymbol{x} 1x=x.

则称 V V V 为数域 K K K 上的 线性空间向量空间

V V V 中所定义的加法及数乘运算统称为 V V V线性运算 。须要指出,不管 V V V 的元素如何,当 K K K 为实数域 R \boldsymbol{R} R 时,则称 V V V 为实线性空间;当 K K K 为复数域 C \boldsymbol{C} C 时,就称 V V V 为复线性空间。

线性空间实例:

  1. 所有实(或复) n n n 维向量的集合 R n \boldsymbol{R}^n Rn(或 C n \boldsymbol{C}^n Cn),对 n n n 维同量的加法及数乘 n n n 维向量的运算是封闭的。加法运算还满足交换律与结合律;数乘向量的运算满足分配律与结合律。
  2. 在集合 P n P_n Pn 中,按通常意义定义多项式加法及实数与多项式乘法,则 P n P_n Pn 对这两种运算是封闭的,因为,如果 f ( t ) ∈ P n f(t)\in P_{n} f(t)Pn g ( t ) ∈ P n g(t)\in P_{n} g(t)Pn,则 f ( t ) + g ( t ) ∈ P n f(t)+g(t)\in P_{n} f(t)+g(t)Pn;若 k ∈ R k\in \boldsymbol{R} kR,则 k f ( t ) ∈ P n kf(t)\in P_{n} kf(t)Pn 。易验证对 P n P_n Pn 的这两种运算,也有如例1中所论的诸算律成立。
  3. 常系数二阶齐次线性微分方程 y ′ ′ − 3 y ′ + 2 y = 0 y''-3y'+2y=0 y3y+2y=0 的解的集合 D D D,对于函数加法及数与函数乘法有,若 y 1 , y 2 ∈ D y_{1},y_{2}\in D y1,y2D,则 y 1 + y 2 ∈ D y_{1}+y_{2}\in D y1+y2D,当 k ∈ R k\in \boldsymbol{R} kR 时,则 k y 1 ∈ D ky_{1}\in D ky1D 。即 D D D 关于这两种运算是封闭的,且满足如例1中所论的诸算律。
  4. 在所有 n n n 阶实矩阵的集合 R n × n \boldsymbol{R}^{n\times n} Rn×n(或复矩阵的集合 C n × n \boldsymbol{C}^{n\times n} Cn×n)中,如果 A , B ∈ R n × n \boldsymbol{A},\boldsymbol{B}\in \boldsymbol{R}^{n\times n} A,BRn×n(或 C n × n \boldsymbol{C}^{n\times n} Cn×n),则 A + B ∈ R n × n \boldsymbol{A}+\boldsymbol{B}\in \boldsymbol{R}^{n\times n} A+BRn×n(或 C n × n \boldsymbol{C}^{n\times n} Cn×n);如果 k ∈ R k\in \boldsymbol{R} kR(或 C n × n \boldsymbol{C}^{n\times n} Cn×n),则 k A ∈ R n × n k\boldsymbol{A}\in \boldsymbol{R}^{n\times n} kARn×n(或 C n × n \boldsymbol{C}^{n\times n} Cn×n)。即集合对于这两种运算是封闭的。加法与数乘矩阵也都满足如例1中所论的诸算律。

例1中的 R n \boldsymbol{R}^n Rn C n \boldsymbol{C}^n Cn)形成实(复)线性空间;例2至例4中的集合,在其各自的加法和数乘运算的定义下,都形成实线性空间。称例4所给的线性空间为 矩阵空间

定理1.1:线性空间 V V V 有唯一的零元素,任一元素也有唯一的负元素。

定义1.2:线性空间 V V V 中线性无关向量组所含向量最大个数称为 V V V 的维数。若 n n n 是具有这个性质的正整数,则称 V V V 的维数是 n n n ,记为 d i m V = n dimV=n dimV=n 。维数是 n n n 的线性空间称为数域 K K K 上的 n n n 维线性空间,记为 V n V^n Vn

例3中的集合 D D D 仅有两个线性无关的向量 y 1 = e x y_{1}=e^{x} y1=ex y 2 = e 2 x y_{2}=e^{2x} y2=e2x ,且 D D D 中任一向量 y y y 都可以由 y 1 y_1 y1 y 2 y_2 y2 线性表示,即有 y = c 1 e x + c 2 e 2 x y=c_1e^{x}+c_{2}e^{2x} y=c1ex+c2e2x,故 d i m D = 2 dimD=2 dimD=2,即 D D D R \boldsymbol{R} R 上的2维线性空间。例4中的 R n × n \boldsymbol{R}^{n\times n} Rn×n R \boldsymbol{R} R 上的 n 2 n^2 n2 维线性空间。


1.2 线性空间的基与坐标

在解析几何中,为了借助于数量运算以实现向量的运算,必须引进向量的坐标。

定义1.3:设 V V V 是数域 K K K 上的线性空间, x 1 , x 2 , ⋯   , x r ( r ⩾ 1 ) \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{r}(r\geqslant 1) x1,x2,,xr(r1) 是属于 V V V 的任意 r r r 个向量,如果它满足:
(1) x 1 , x 2 , ⋯   , x r ( r ⩾ 1 ) \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{r}(r\geqslant 1) x1,x2,,xr(r1) 线性无关;
(2) V V V 中任一向量 x \boldsymbol{x} x 都是 x 1 , x 2 , ⋯   , x r \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{r} x1,x2,,xr 的线性组合。

则称 x 1 , x 2 , ⋯   , x r \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{r} x1,x2,,xr V V V 的一个 基底 ,并称 x i ( i = 1 , 2 , ⋯   , r ) \boldsymbol{x}_{i}(i=1,2,\cdots ,r) xi(i=1,2,,r)基向量

Noted:

  1. 线性空间的维数是其基中所含向量的个数
  2. 齐次线性方程组Ax=0的基础解系中所含的向量,就是其解空间的一个基
  3. 一个线性空间的基并不是唯一的

例如:例3中 e x e^{x} ex e 2 x e^{2x} e2x 就是线性空间 D D D 的一个基;例4中 E i j ( i , j = 1 , 2 , ⋯   , n ) \boldsymbol{E}_{ij}(i,j=1,2,\cdots ,n) Eij(i,j=1,2,,n) 就是线性空间 R n × n \boldsymbol{R}^{n\times n} Rn×n 的一个基。

定义1.4:称线性空间 V n V^n Vn 的一个基 x 1 , x 2 , ⋯   , x n \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{n} x1,x2,,xn V n V^n Vn 的一个 坐标系 。设向量 x ∈ V n \boldsymbol{x} \in V^n xVn,它在该基下的线性表示式为 x = ξ 1 x 1 + ξ 2 x 2 + ⋯ + ξ n x n \boldsymbol{x}=\xi _{1}\boldsymbol{x}_{1}+\xi _{2}\boldsymbol{x}_{2}+\cdots +\xi _{n}\boldsymbol{x}_{n} x=ξ1x1+ξ2x2++ξnxn 则称 ξ 1 , ξ 2 , ⋯   , ξ n \xi _{1},\xi _{2},\cdots ,\xi _{n} ξ1,ξ2,,ξn x \boldsymbol{x} x 在该坐标系中的 坐标分量 ,记为 ( ξ 1 , ξ 2 , ⋯   , ξ n ) T (\xi _{1},\xi _{2},\cdots ,\xi _{n})^{T} (ξ1,ξ2,,ξn)T

向量 x \boldsymbol{x} x 在基 x = ξ 1 x 1 + ξ 2 x 2 + ⋯ + ξ n x n \boldsymbol{x}=\xi _{1}\boldsymbol{x}_{1}+\xi _{2}\boldsymbol{x}_{2}+\cdots +\xi _{n}\boldsymbol{x}_{n} x=ξ1x1+ξ2x2++ξnxn 下的矩阵表示为

x = [ x 1 x 2 ⋯ x n ] [ ξ 1 ξ 2 ⋮ ξ n ] \boldsymbol{x}=\begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix}\begin{bmatrix} \xi _{1}\\ \xi _{2}\\ \vdots \\ \xi _{n} \end{bmatrix} x=[x1x2xn]ξ1ξ2ξn

Noted: 在不同的坐标系(或基)中,同一向量的坐标一般是不同的。

定理1.2:设 x 1 , x 2 , ⋯   , x n \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{n} x1,x2,,xn V n V^n Vn 的一个基, x ∈ V n \boldsymbol{x} \in V^n xVn ,则 x \boldsymbol{x} x 可以唯一地表示成 x 1 , x 2 , ⋯   , x n \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{n} x1,x2,,xn 的线性组合。

例:复数域 C \boldsymbol{C} C 是其自身上的线性空间,且 d i m C = 1 dimC=1 dimC=1,数 1 就是它的基;如果把 C \boldsymbol{C} C 看做是实数域 R \boldsymbol{R} R 上的线性空间,则 d i m C = 2 dimC =2 dimC=2,数 1j 就是一个基。此例说明,维数与所考虑的数域有关


1.3 基变换与坐标变换

V n V^n Vn 中,任意 n n n 个线性无关的向量都可取作它的基或坐标系。但对不同基或坐标系,同一个向量的坐标一般是不同的。现在讨论当基改变时,向量的坐标如何变化?

1.3.1 基变换

x 1 , x 2 , ⋯   , x n \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{n} x1,x2,,xn V n V^n Vn 的旧基,而 y 1 , y 2 , ⋯   , y n \boldsymbol{y}_{1},\boldsymbol{y}_{2},\cdots ,\boldsymbol{y}_{n} y1,y2,,yn V n V^n Vn 的新基,那么有

{ y 1 = c 11 x 1 + c 21 x 2 + ⋯ + c n 1 x n y 2 = c 12 x 1 + c 22 x 2 + ⋯ + c n 2 x n ⋮ y n = c 1 n x 1 + c 2 n x 2 + ⋯ + c n n x n \left\{\begin{matrix} \boldsymbol{y}_{1}=c_{11}\boldsymbol{x}_{1}+c_{21}\boldsymbol{x}_{2}+\cdots +c_{n1}\boldsymbol{x}_{n}\\ \boldsymbol{y}_{2}=c_{12}\boldsymbol{x}_{1}+c_{22}\boldsymbol{x}_{2}+\cdots +c_{n2}\boldsymbol{x}_{n}\\ \vdots \\ \boldsymbol{y}_{n}=c_{1n}\boldsymbol{x}_{1}+c_{2n}\boldsymbol{x}_{2}+\cdots +c_{nn}\boldsymbol{x}_{n} \end{matrix}\right. y1=c11x1+c21x2++cn1xny2=c12x1+c22x2++cn2xnyn=c1nx1+c2nx2++cnnxn

或者形式地写成 (基变换公式


( y 1 , y 2 , ⋯   , y n ) = ( x 1 , x 2 , ⋯   , x n ) C (\boldsymbol{y}_{1},\boldsymbol{y}_{2},\cdots ,\boldsymbol{y}_{n})=(\boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{n})\boldsymbol{C} (y1,y2,,yn)=(x1,x2,,xn)C

其中,矩阵

C = [ c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋮ c n 1 c n 2 ⋯ c n n ] \boldsymbol{C}=\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n}\\ c_{21} & c_{22} & \cdots & c_{2n}\\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} C=c11c21cn1c12c22cn2c1nc2ncnn

称为由旧基改变为新基的 过渡矩阵

1.3.2 坐标变换

x ∈ V n \boldsymbol{x} \in V^n xVn 在上面所述旧新旧基下的坐标依次是 ( ξ 1 , ξ 2 , ⋯   , ξ n ) T (\xi _{1},\xi _{2},\cdots ,\xi _{n})^{T} (ξ1,ξ2,,ξn)T ( η 1 , η 2 , ⋯   , η n ) T (\eta _{1},\eta _{2},\cdots ,\eta _{n})^{T} (η1,η2,,ηn)T ,即有

x = ξ 1 x 1 + ξ 2 x 2 + ⋯ + ξ n x n = η 1 y 1 + η 2 y 2 + ⋯ + η n y n \boldsymbol{x}=\xi _{1}\boldsymbol{x}_{1}+\xi _{2}\boldsymbol{x}_{2}+\cdots +\xi _{n}\boldsymbol{x}_{n}=\eta _{1}\boldsymbol{y}_{1}+\eta _{2}\boldsymbol{y}_{2}+\cdots +\eta _{n}\boldsymbol{y}_{n} x=ξ1x1+ξ2x2++ξnxn=η1y1+η2y2++ηnyn

采用矩阵表示,则有

x = [ x 1 x 2 ⋯ x n ] [ ξ 1 ξ 2 ⋮ ξ n ] = [ y 1 y 2 ⋯ y n ] [ η 1 η 2 ⋮ η n ] = [ x 1 x 2 ⋯ x n ] C [ η 1 η 2 ⋮ η n ] \boldsymbol{x}=\begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix}\begin{bmatrix} \xi _{1}\\ \xi _{2}\\ \vdots \\ \xi _{n} \end{bmatrix} =\begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix}\begin{bmatrix} \eta _{1}\\ \eta _{2}\\ \vdots \\ \eta _{n} \end{bmatrix}=\begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix}\boldsymbol{C}\begin{bmatrix} \eta _{1}\\ \eta _{2}\\ \vdots \\ \eta _{n} \end{bmatrix} x=[x1x2xn]ξ1ξ2ξn=[y1y2yn]η1η2ηn=[x1x2xn]Cη1η2ηn

由于基向量是线性无关的,因此有


[ ξ 1 ξ 2 ⋮ ξ n ] = C [ η 1 η 2 ⋮ η n ] \begin{bmatrix} \xi _{1}\\ \xi _{2}\\ \vdots \\ \xi _{n} \end{bmatrix}=\boldsymbol{C}\begin{bmatrix} \eta _{1}\\ \eta _{2}\\ \vdots \\ \eta _{n} \end{bmatrix} ξ1ξ2ξn=Cη1η2ηn

或者

[ η 1 η 2 ⋮ η n ] = C − 1 [ ξ 1 ξ 2 ⋮ ξ n ] \begin{bmatrix} \eta _{1}\\ \eta _{2}\\ \vdots \\ \eta _{n} \end{bmatrix}=\boldsymbol{C}^{-1}\begin{bmatrix} \xi _{1}\\ \xi _{2}\\ \vdots \\ \xi _{n} \end{bmatrix} η1η2ηn=C1ξ1ξ2ξn

上两式给出了在基变换式下向量坐标的变换公式。


2. 线性子空间

2.1 定义

V 1 V_{1} V1 是数域 K K K 上的线性空间 V V V 的一个非空子集合,且对 V V V 已有的线性运算满足以下条件:

  1. 如果 x , y ∈ V 1 \boldsymbol{x},\boldsymbol{y} \in V_{1} xyV1 ,则 x + y ∈ V 1 \boldsymbol{x}+\boldsymbol{y} \in V_{1} x+yV1
  2. 如果 x ∈ V 1 \boldsymbol{x} \in V_{1} xV1 k ∈ K k \in K kK ,则 k x ∈ V 1 k\boldsymbol{x} \in V_{1} kxV1

则称 V 1 V_{1} V1 V V V线性子空间子空间

Noted

  1. 线性子空间 V 1 V_{1} V1 也是线性空间。因为 V 1 V_{1} V1 V V V 的子集合,所以 V 1 V_{1} V1 中的向量不仅对线性空间 V V V 已定义的线性运算封闭,而且还满足相应的8条运算律。
  2. 每个非零线性空间至少有两个子空间,一个是它本身,另一个是仅由零向量所构成的子集合,后者称为 零子空间
  3. 由于零子空间不含线性无关的向量,因此它没有基,规定其维数为零。
  4. 线性子空间中不可能比整个线性空间中有更数目的线性无关的向量,所以,任何一个线性子空间 V 1 V_{1} V1 的维数不大于整个线性空间 V V V 的维数,即有 d i m V 1 ≤ d i m V dimV_{1} \leq dimV dimV1dimV

2.2 线性子空间的生成

定义1:设 x 1 , x 2 , ⋯   , x m \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{m} x1,x2,,xm 是数域 K K K 上的线性空间 V V V 的一组向量,其所有可能的线性组合的集合
V 1 = { k 1 x 1 + k 2 x 2 + ⋯ + k m x m }      ( k i ∈ K , i = 1 , 2 , ⋯   , m ) V_{1}=\left \{ k_{1}\boldsymbol{x}_{1}+k_{2}\boldsymbol{x}_{2}+\cdots +k_{m}\boldsymbol{x}_{m} \right \}\; \; \left ( k_{i}\in K,i=1,2,\cdots ,m \right ) V1={k1x1+k2x2++kmxm}(kiK,i=1,2,,m)
是非空的,且 V 1 V_{1} V1 对于 V V V 的线性运算是封闭的,因而 V 1 V_{1} V1 V V V 的一个线性子空间。这个子空间称为由 x 1 , x 2 , ⋯   , x m \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{m} x1,x2,,xm 生成(或张成)的子空间,记为
L ( x 1 , x 2 , ⋯   , x m ) = { k 1 x 1 + k 2 x 2 + ⋯ + k m x m } L\left ( \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{m} \right )=\left \{ k_{1}\boldsymbol{x}_{1}+k_{2}\boldsymbol{x}_{2}+\cdots +k_{m}\boldsymbol{x}_{m}\right \} L(x1,x2,,xm)={k1x1+k2x2++kmxm}

定义2:如果 x 1 , x 2 , ⋯   , x m \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{m} x1,x2,,xm V 1 V_{1} V1 的一个基,那么有
V 1 = L ( x 1 , x 2 , ⋯   , x m ) V_{1}=L\left ( \boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{m} \right ) V1=L(x1,x2,,xm)
特别地,零子空间就是由零元素生成的子空间 L ( 0 ) L(\boldsymbol{0}) L(0)

2.3 子空间的交与和

2.3.1 交空间

定义:设 V 1 V_{1} V1 V 2 V_{2} V2 是数域 K K K 上的线性空间 V V V 的子空间,则所有满足 x ∈ V 1 \boldsymbol{x}\in V_{1} xV1 x ∈ V 2 \boldsymbol{x}\in V_{2} xV2 的这样的元素的集合称为 V 1 V_{1} V1 V 2 V_{2} V2 ,记为 V 1 ∩ V 2 V_{1}\cap V_{2} V1V2 ,即
V 1 ∩ V 2 = { x ∣ x ∈ V 1 且 a ∈ V 2 } V_{1}\cap V_{2}=\left \{ \boldsymbol{x} | \boldsymbol{x}\in V_{1} 且 a\in V_{2}\right \} V1V2={xxV1aV2}

定理:如果 V 1 V_{1} V1 V 2 V_{2} V2 是数域 K K K 上的线性空间 V V V 的两个子空间,那么它们的交 V 1 ∩ V 2 V_{1}\cap V_{2} V1V2 也是 V V V 的子空间。

子空间的交满足交换律和结合律:
V 1 ∩ V 2 = V 2 ∩ V 1 V_{1}\cap V_{2}=V_{2}\cap V_{1} V1V2=V2V1

( V 1 ∩ V 2 ) ∩ V 3 = V 1 ∩ ( V 1 ∩ V 3 ) (V_{1}\cap V_{2})\cap V_{3}=V_{1}\cap (V_{1}\cap V_{3}) (V1V2)V3=V1(V1V3)

2.3.2 和空间

定义:设 V 1 V_{1} V1 V 2 V_{2} V2 是数域 K K K 上的线性空间 V V V 的子空间,且 x ∈ V 1 \boldsymbol{x}\in V_{1} xV1 y ∈ V 2 \boldsymbol{y}\in V_{2} yV2 ,则所有 x + y \boldsymbol{x}+\boldsymbol{y} x+y 这样的元素的集合称为 V 1 V_{1} V1 V 2 V_{2} V2 ,记为 V 1 + V 2 V_{1}+V_{2} V1+V2 ,即
V 1 + V 2 = { z ∣ z = x + y , x ∈ V 1 , y ∈ V 2 } V_{1}+V_{2}=\left \{ \boldsymbol{z} | \boldsymbol{z} = \boldsymbol{x} + \boldsymbol{y}, \boldsymbol{x} \in V_{1}, \boldsymbol{y}\in V_{2} \right \} V1+V2={zz=x+y,xV1,yV2}

定理:如果 V 1 V_{1} V1 V 2 V_{2} V2 是数域 K K K 上的线性空间 V V V 的子空间,那么它们的和 V 1 + V 2 V_{1}+V_{2} V1+V2 也是 V V V 的子空间。

子空间的和满足交换律和结合律:
V 1 + V 2 = V 2 + V 1 V_{1}+ V_{2}=V_{2}+ V_{1} V1+V2=V2+V1

( V 1 + V 2 ) + V 3 = V 1 + ( V 1 + V 3 ) (V_{1}+V_{2})+ V_{3}=V_{1}+ (V_{1}+ V_{3}) (V1+V2)+V3=V1+(V1+V3)

例如,在线性空间 R 3 \boldsymbol{R}^{3} R3 中, V 1 V_{1} V1 表示过原点的直线 l 1 l_{1} l1 上所有向量形成的子空间; V 2 V_{2} V2 表示另一条过原点的直线 l 2 l_{2} l2 上所有向量形成的子空间。显然 V 1 ∩ V 2 V_{1}\cap V_{2} V1V2 是由 l 1 l_{1} l1 l 2 l_{2} l2 交点(原点)形成的零子空间; V 1 + V 2 V_{1}+V_{2} V1+V2 是在由 l 1 l_{1} l1 l 2 l_{2} l2 所决定的平面上全体向量形成的子空间。

2.3.2 维数

定理:(维数公式)如果 V 1 V_{1} V1 V 2 V_{2} V2 是数域 K K K 上的线性空间 V V V 的两个子空间,那么有下面公式
d i m V 1 + d i m V 2 = d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) dimV_{1}+dimV_{2}=dim(V_{1}+V_{2})+dim(V_{1}\cap V_{2}) dimV1+dimV2=dim(V1+V2)+dim(V1V2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值