这段代码的目的是使用Python中的matplotlib库绘制一个带误差条的散点图。它首先设置了matplotlib的配置参数,以使用支持中文字符的SimHei字体。然后,它生成了一系列的x值和y值,其中y值是从泊松分布随机生成的,以模拟实验数据。接着,它创建了一个误差数组,表示每个数据点的测量误差。
使用plt.errorbar函数,代码生成了一个散点图,其中包括y值的误差条。图表的标题、x轴和y轴标签被设置为中文,以模拟您提供的图像中的样式。最后,显示了图表。
学习测试代码
"""
# -*- coding: utf-8 -*-
# @Time : 2024/1/23 10:55
# @Author : 王摇摆
# @FileName: code1.py
# @Software: PyCharm
# @Blog :https://blog.csdn.net/weixin_44943389?type=blog
# 该脚本绘制带有误差条的散点图
"""
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.font_manager import FontProperties
# 设置matplotlib配置参数,使用支持中文的字体
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置宋体
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
# 模拟数据
np.random.seed(0)
x = np.arange(0, 200, 10)
y = np.random.poisson(lam=3.0, size=x.size)
# 添加误差条:这里假设所有点的误差都是固定的
error = np.full_like(y, 0.5, dtype=float)
# 绘制误差条图
plt.figure(figsize=(10, 5))
plt.errorbar(x, y, yerr=error, fmt='o', ecolor='skyblue', capsize=5, capthick=2, color='blue')
# 设置图表以类似于提供的示例的方式
plt.title('不同方法的实验结果图', )
plt.xlabel('变量值', )
plt.ylabel('测量值/单位', )
plt.grid(True)
# 显示图表
plt.show()