读取CSV文件并使用3Σ准则进行离群异常点检测

使用您提供的Python代码以绘制file_path指定的文件内容,我们首先需要读取该CSV文件中的数据。我会假设CSV文件中包含了一列或多列数值数据。在此基础上,我将对代码进行相应的修改:

  1. 引入pandas库来读取CSV文件。
  2. 使用pandas读取位于file_path的CSV文件。
  3. 选择文件中要分析的数据列(这里我会假设是第一列)。
  4. 接着,使用这些数据替换原来随机生成的data数组。
  5. 最后,绘制这些数据的异常值检测图。

请注意,由于无法直接访问您的文件系统,您需要在自己的环境中运行修改后的代码。下面是修改后的代码示例:

# -*- coding: utf-8 -*-
# @Time    : 2024/1/26 8:39
# @Author  : 王摇摆
# @FileName: code7.py
# @Software: PyCharm
# @Blog    :https://blog.csdn.net/weixin_44943389?type=blog
# 使用3Σ准则对数据进行异常点检测和处理

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd  # 导入pandas

# 设置matplotlib配置参数,使用支持中文的字体
plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置宋体
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

file_path = r'C:\Users\Administrator\Desktop\Code\PistonPumpFaultDiagnosis\dataset\X_train.csv'

# 读取CSV文件
data_df = pd.read_csv(file_path)
# 假设我们使用第一列数据
data = data_df.iloc[:, 0].values

# 计算均值和标准差
mean_value = np.mean(data)
std_dev = np.std(data)

# 定义异常值的阈值
lower_bound = mean_value - 3 * std_dev
upper_bound = mean_value + 3 * std_dev

# 找出异常值
outliers = (data < lower_bound) | (data > upper_bound)

# 可视化
plt.figure()
plt.scatter(np.arange(len(data))[~outliers], data[~outliers], 25, 'b', marker='o', label='正常数据')  # 蓝色圆圈
plt.scatter(np.arange(len(data))[outliers], data[outliers], 40, 'r', marker='d', label='异常值')  # 红色菱形

# 增加异常值阈值线
plt.axhline(lower_bound, linestyle='--', linewidth=1.5, label='异常值下界')
plt.axhline(upper_bound, linestyle='--', linewidth=1.5, label='异常值上界')

plt.grid(True)  # 开启网格
plt.xlabel('数据点索引', fontsize=12)
plt.ylabel('数据值', fontsize=12)
plt.title('数据点和异常值', fontsize=14)
plt.legend(loc='best')
plt.xlim([0, len(data)])  # 设置X轴的范围
plt.show()

在运行此代码之前,请确保CSV文件路径正确,并且您的环境中已经安装了pandasmatplotlib库。如果CSV文件的结构与我所假设的不同,请相应调整数据读取部分的代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王摇摆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值