使用您提供的Python代码以绘制file_path
指定的文件内容,我们首先需要读取该CSV文件中的数据。我会假设CSV文件中包含了一列或多列数值数据。在此基础上,我将对代码进行相应的修改:
- 引入
pandas
库来读取CSV文件。 - 使用
pandas
读取位于file_path
的CSV文件。 - 选择文件中要分析的数据列(这里我会假设是第一列)。
- 接着,使用这些数据替换原来随机生成的
data
数组。 - 最后,绘制这些数据的异常值检测图。
请注意,由于无法直接访问您的文件系统,您需要在自己的环境中运行修改后的代码。下面是修改后的代码示例:
# -*- coding: utf-8 -*-
# @Time : 2024/1/26 8:39
# @Author : 王摇摆
# @FileName: code7.py
# @Software: PyCharm
# @Blog :https://blog.csdn.net/weixin_44943389?type=blog
# 使用3Σ准则对数据进行异常点检测和处理
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd # 导入pandas
# 设置matplotlib配置参数,使用支持中文的字体
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置宋体
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
file_path = r'C:\Users\Administrator\Desktop\Code\PistonPumpFaultDiagnosis\dataset\X_train.csv'
# 读取CSV文件
data_df = pd.read_csv(file_path)
# 假设我们使用第一列数据
data = data_df.iloc[:, 0].values
# 计算均值和标准差
mean_value = np.mean(data)
std_dev = np.std(data)
# 定义异常值的阈值
lower_bound = mean_value - 3 * std_dev
upper_bound = mean_value + 3 * std_dev
# 找出异常值
outliers = (data < lower_bound) | (data > upper_bound)
# 可视化
plt.figure()
plt.scatter(np.arange(len(data))[~outliers], data[~outliers], 25, 'b', marker='o', label='正常数据') # 蓝色圆圈
plt.scatter(np.arange(len(data))[outliers], data[outliers], 40, 'r', marker='d', label='异常值') # 红色菱形
# 增加异常值阈值线
plt.axhline(lower_bound, linestyle='--', linewidth=1.5, label='异常值下界')
plt.axhline(upper_bound, linestyle='--', linewidth=1.5, label='异常值上界')
plt.grid(True) # 开启网格
plt.xlabel('数据点索引', fontsize=12)
plt.ylabel('数据值', fontsize=12)
plt.title('数据点和异常值', fontsize=14)
plt.legend(loc='best')
plt.xlim([0, len(data)]) # 设置X轴的范围
plt.show()
在运行此代码之前,请确保CSV文件路径正确,并且您的环境中已经安装了pandas
和matplotlib
库。如果CSV文件的结构与我所假设的不同,请相应调整数据读取部分的代码。