Poisson 重建算法和 Delaunay 三角剖分算法

 Poisson 重建算法

       Poisson重建算法是一种基于偏微分方程求解的无网格表面重建方法,它可以将无序的点云数据转化为平滑的三角形网格表面。这个算法最初由Kazhdan 等人提出,在计算机图形学和数字几何处理领域得到了广泛应用。

        Poisson 重建算法的主要思想是从点云数据中恢复一个表示该点云拓扑结构和几何信息的稠密函数场。这个函数场可以通过求解具有约束的Poisson方程来实现。该方程可以看作是一个光滑曲面模型的拉普拉斯比较其他方法低阶,且对噪声和离群点不敏感。 然后,通过对这个函数场进行等值面提取,就可以得到表面的网格表示。

具体来说,Poisson重建算法包含以下步骤:

  1. 对输入的点云数据进行预处理,例如去除噪声、离群点等。

  2. 基于点云数据构建一个带权重的无定向图,其中顶点代表点云中的点,边权重表示两个点之间的局部协方差矩阵的行列式。

  3. 根据邻域关系,构造出边界和内部边界的约束条件。

  4. 采用多重网格方法求解Poisson方程,将点云数据转化为函数场。

  5. 对函数场进行等值面提取,生成表面网格表示。

尽管 Poisson 重建算法对噪声和离群点不敏感,但它对密采样点云表现出更好的表面重建效果。同时,它也有一些缺点,如对于大规模点云数据的处理需要较长的计算时间,而且容易导致网格表面的伸缩变形等问题,因此在实际应用中需要结合实际情况选择合适的算法。

 Delaunay 三角剖分算法

        Delaunay 三角剖分算法是一种将点集进行无重叠三角形划分的方法。在 Delaunay 三角剖分中,任意两个相邻三角形形成的凸四边形的对角线如果可以互换的话,那么两个三角形将被交换。这个性质使得Delaunay 三角剖分具有一些优秀的性质,如最接近性、唯一性和最优性。其中最接近性指以最近邻的三个点形成三角形,且各线段(三角形的边)皆不相交;唯一性指不论从区域何处开始构建,最终都将得到一致的结果;最优性指任意两个相邻三角形形成的凸四边形的对角线如果可以互换的话,那么两个三角形将被交换。

        算法的基本思想是,对于给定的点集,找到它们之间的连线中不会穿过点集内部的所有三角形,即所谓的 Delaunay 三角剖分。Delaunay 三角剖分的特点是,所有的外接圆都不包含点集中的其他点。这使得它能够提供一些有用的性质,例如最小化最大角,并通过创建更长的三角形与较小的角度来适应容差。

        Delaunay 三角剖分有多种构建算法,其中一种常用的是基于增量法的算法。它的过程是从一个空的三角形网格开始,依次插入点并将每个新点插入到之前的三角形中。在插入新点时,同时维护其周围的三角形及其相邻三角形之间的邻接关系,以满足Delaunay条件。这个过程将重复执行直到所有的点都被插入到三角形网格中,形成了完整的Delaunay三角剖分。

        总之,Delaunay 三角剖分是一种常用的三维空间数据结构,在计算机图形学、计算机视觉、地理信息系统等领域有广泛的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值