关于难点
技术:
ASR:
- 对于ASR来说“远场”、“纠错”、“全双工”是3大难点;
- 在“远场”上,是智能音箱们需要优化的问题,包括拾音后的预处理,以及对声源定位来保持对话的连续性是提升体验的关键;
- 在“纠错”上,不同地区用户的口音各异,对AI数据、算法、算力都进行了考验,如何获得更多语料来建立不同口音的模型,如何以更高效的算法配合算力来快速识别出用户说的话并准确“纠错”,反应了产品的精准性,这非常重要;
- 在“全双工”上,提前领先的厂家会以“全双工”作为其核心的竞争力之一,因为现在市面上大多的“智能语音助手”都是ONE-SHOT的能力,每次都要唤醒或操作的对话体验非常糟糕,“全双工”提供了相对流畅的多轮对话体验,但目前如何做好“全双工”还是比较困难的,这涉及了对话后该不该保持对话、打断的灵敏度等因素。
NLP:
- 对于NLP来说应该就是语料库的积累以及建模,同时还有上下文理解的能力,时下因为大多的企业不具备足够海量的数据的累积,AI反应出来的格式化还是非常的明显的,同时回溯的能力基本上等于0;
- 通过我的了解,不少做语音的公司起步时是以NLP来切入的