粒子群算法PSO优化LSTM超参数

文章介绍了使用LSTM模型预测航空乘客数量的不同方法,包括基础LSTM、注意力机制的LSTM、多层LSTM、双向LSTM以及结合CNN的模型。重点在于使用粒子群优化算法(PSO)来优化LSTM模型的超参数,以提高预测精度。经过训练和评估,展示了优化后的模型在MAE、RMSE、MAPE和SMAPE等指标上的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

  1. LSTM 航空乘客预测单步预测的两种情况。 简单运用LSTM 模型进行预测分析。
  2. 加入注意力机制的LSTM 对航空乘客预测采用了目前市面上比较流行的注意力机制,将两者进行结合预测。
  3. 多层 LSTM 对航空乘客预测 简单运用多层的LSTM 模型进行预测分析。
  4. 双向LSTM 对航空乘客预测双向LSTM网络对其进行预测。
  5. MLP多层感知器 对航空乘客预测简化版 使用MLP 对航空乘客预测
  6. CNN + LSTM 航空乘客预测采用的CNN + LSTM网络对其进行预测。
  7. ConvLSTM 航空乘客预测采用ConvLSTM 航空乘客预测
  8. LSTM的输入格式和输出个数说明 中对单步和多步的输入输出格式进行了解释
  9. LSTM 单变量多步预测航空乘客简单版
  10. LSTM 单变量多步预测航空乘客复杂版
  11. LSTM 多变量单步预测空气质量(1—》1) 用LSTM 前一个数据点的多变量预测下一个时间点的空气质量
  12. LSTM 多变量单步预测空气质量(3 —》1) 用LSTM 前三个数据点的多变量预测下一个时间点的空气质量
  13. 麻雀算法SSA优化LSTM超参数
  14. 蚁群算法ACO优化LSTM超参数

本文主要是采用粒子群算法PSO优化LSTM超参数

PSO

pip3 install pyswarm

LSTM

def build_model(neurons1, neurons2, dropout):
    X_train, y_train, X_test, y_test = process_data()
    # X_train, y_train = create_dataset(X_train, y_train, steps)
    # X_test, y_test = create_dataset(X_test, y_test, steps)
    nb_features = X_train.shape[2]
    input1 = X_train.shape[1]
    model1 = Sequential()
    model1.add(LSTM(
        input_shape=(input1, nb_features),
        units=neurons1,
        return_sequences=True))
    model1.add(Dropout(dropout))

    model1.add(LSTM(
        units=neurons2,
        return_sequences=False))
    model1.add(Dropout(dropout))

    model1.add(Dense(units=1))
    model1.add(Activation("linear"))
    model1.compile(loss='mse', optimizer='Adam', metrics='mae')
    return model1, X_train, y_train, X_test, y_test

优化超参数

if __name__ == '__main__':
 if __name__ == '__main__':
    '''
    神经网络第一层神经元个数
    神经网络第二层神经元个数
    dropout比率
    batch_size
    '''
    UP = [150, 15, 0.5, 16]
    DOWN = [50, 5, 0.05, 8]

    # # 开始优化
    pso_ = pso(training, lb=DOWN, ub = UP)
    pso_.run()
    print('best_params is ', pso_.gbest_x)
    print('best_precision is', 1 - pso_.gbest_y)

    # 训练模型  使用ssa找到的最好的神经元个数
    neurons1 = int(pso_.gbest_x[0])
    neurons2 = int(pso_.gbest_x[1])
    dropout = pso_.gbest_x[2]
    batch_size = int(pso_.gbest_x[3])
    # neurons1 = 64
    # neurons2 = 64
    # dropout = 0.01
    # batch_size = 32
    model, X_train, y_train, X_test, y_test = build_model(neurons1, neurons2, dropout)
    history1 = model.fit(X_train, y_train, epochs=150, batch_size=batch_size, validation_split=0.2, verbose=1,
                         callbacks=[EarlyStopping(monitor='val_loss', patience=9, restore_best_weights=True)])
    # 测试集预测
    y_score = model.predict(X_test)
    # 反归一化
    y_score = scaler.inverse_transform(y_score.reshape(-1, 1))
    y_test = scaler.inverse_transform(y_test.reshape(-1, 1))

    print("==========evaluation==============\n")
    from sklearn.metrics import mean_squared_error
    from sklearn.metrics import mean_absolute_error #平方绝对误差
    import math

    MAE = mean_absolute_error(y_test, y_score)
    print('MAE: %.4f ' % MAE)
    RMSE = math.sqrt(mean_squared_error(y_test, y_score))
    print('RMSE: %.4f ' % (RMSE))
  
    # MAPE和SMAPE
    def mape(y_true, y_pred):
        return np.mean(np.abs((y_pred - y_true) / y_true)) * 100


    def smape(y_true, y_pred):
        return 2.0 * np.mean(np.abs(y_pred - y_true) / (np.abs(y_pred) + np.abs(y_true))) * 100

    MAPE = mape(y_test, y_score)
    print('MAPE: %.4f ' % MAPE)

    SMAPE = smape(y_test, y_score)
    print('SMAPE: %.4f ' % SMAPE)

总结

粒子群算法优化,也算是比较老点的算法,但其仍然具有一定的价值

备注:
需要源代码和数据集,或者想要沟通交流,请私聊,谢谢.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nsq_ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值