线性分组码中的伽罗华域,有限域、扩展域、本原多项式等名称区别方法。

有限域,如GF(p)和GF(p^m),是构造纠错码如BCH码和RS码的关键数学结构。GF(p^m)相对于GF(p)是扩展域,其中p是其特征。本原多项式在这些域中扮演重要角色,它们是首一且即约的多项式,对编码理论至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      有限域,也称为伽罗华域(Galois Fields,简写为GF,该命名是为纪念法国数学家 Evariste Galois)。它是纠错码(尤其是BCH码和RS码的基础)理论的重要基础。

GF(p)称为GF(p^m)的基域。

GF(p^m)称为GF(p)的扩展域。

p是GF(p^m)的特征。

有限域上的多项式g(x),即是首一,又是即约的称为本原多项式。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值