论文综述:Domain Generalization: A Survey

摘要

面向非分布(OOD,out of the distribution)数据的泛化是人类的一项自然能力但机器的重现却具有挑战性。这是因为大多数统计学习算法强烈依赖于源/目标数据的i.d.假设,而在实践中,源和目标之间的领域偏移是普遍的,领域泛化(DG)的目标是通过仅使用源数据进行模型学习来实现OOD泛化。自2011年首次提出以来,DG的研究取得了很大的进展。特别是,对这一主题的深入研究已经产生了广泛的方法论,例如,那些基于领域对齐,元学习,数据增强,或集成学习,仅举几个例;并涵盖了各种应用,如物体识别,分割,动作识别,行人再识别。本文首次对近十年来的发展进行了全面的文献综述。具体来说,我们首先对DG进行了正式的定义,并将其与领域自适应和迁移学习等其他研究领域联系起来。其次,我们对现有的方法进行了全面的回顾,并根据它们的方法和动机进行了分类。最后,我们通过对未来研究方向的见解和讨论来结束本次调查。

1.INTRODUCTION

在这里插入图片描述

2.BACKGROUND

在这里插入图片描述

2.1 A Brief History of Domain Generalization

在这里插入图片描述

2.2 Problem Definition

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3 Related Topics

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.4 Evaluation and Datasets

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 METHODOLOGIES:A SURVEY

在这里插入图片描述

3.1 Domain Alignment(领域对齐)

在这里插入图片描述

3.1.1 What to Align

在这里插入图片描述
在这里插入图片描述

3.1.2 How to Align

在这里插入图片描述

3.2 Meta-Learning(元学习)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 Data Augmentation (数据增强)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.4 Ensemble Learning (集成学习)

在这里插入图片描述

3.5 Network Architecture Design (网络架构设计)

在这里插入图片描述
在这里插入图片描述

3.6 Self-Supervised Learning (自监督学习)

在这里插入图片描述

3.7 Learning Disentangled Representations (学习解耦表示)

在这里插入图片描述

3.8 Invariant Risk Minimization (不变风险最小化)

在这里插入图片描述

3.9 Training Heuristics (训练启发法)

在这里插入图片描述

3.10 Side Information (辅助信息)

在这里插入图片描述

3.11 Transfer Learning(迁移学习)

在这里插入图片描述

4. FUTURE RESEARCH DIRECTIONS

在这里插入图片描述

4.1 Model Arichitecture

在这里插入图片描述

4.2 Learning

在这里插入图片描述

4.3 Benchmarks

在这里插入图片描述

5. CONCLUSION

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
针对过分分布的普遍化:一项调查 "towards out of distribution generalization: a survey"是一项对过分分布普遍化现象的研究。该研究关注如何处理机器学习中的模型在训练过程中未曾遇到的情况下的泛化能力。 当前,机器学习中的模型往往在面对与训练数据不同的情况时出现问题。这些情况被称为"分布外"或"过分分布"。过分分布问题在现实世界的应用中非常普遍,例如在医学影像诊断中,模型在对未见过的病例进行预测时可能出现错误。 为了改善过分分布问题,该调查着重研究了几种处理方法。首先,一种方法是使用生成对抗网络(GAN)。GAN可以通过学习未见过的数据分布来生成合成样本,从而提高模型的泛化性能。其次,该调查还介绍了自监督学习和深度对比学习等技术。这些方法通过引入自动生成标签或学习新的特征表示来增强模型的泛化能力。 此外,该调查提到了一些用于评估模型在过分分布上泛化能力的评估指标。例如,置信度和不确定性度量可以帮助评估模型对于不同类别或未知样本的预测是否可信。同时,模型的置换不变性和鲁棒性也是评估模型泛化能力的重要因素。 总结来说,这项调查对于解决过分分布普遍化问题提供了一些有益的方法和指导。通过使用生成对抗网络、自监督学习和深度对比学习技术,以及评估模型的不确定性和鲁棒性,我们可以提高模型在未曾遇到的情况下的泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值