强化学习笔记:Q-Learning

本文详细解读了Q-Learning强化学习算法的核心转移规则,包括公式Q(s,a)的解释,状态(s)和行为(a)的作用,以及γ(折扣因子)对即时和未来奖励的影响。通过理解这个公式,读者可以掌握如何在智能体决策过程中平衡短期与长期收益。
摘要由CSDN通过智能技术生成

#强化学习笔记:Q-Learning

  1. Q-Learning算法的转移规则公式:

Q ( s , a ) = R ( s , a ) + γ ∗ max ⁡ a ~ { Q ( s ~ , a ~ ) } Q(s,a) = R(s,a) + \gamma*\max_{\tilde{a}}\{Q(\tilde{s},\tilde{a})\} Q(s,a)=R(s,a)+γa~max{Q(s~,a~)}

  • s,a表示当前的状态和行为, s ~ , a ~ \tilde{s},\tilde{a} s~,a~表示s的下一个状态及行为。参数 γ \gamma γ为满足 0 ≤ γ < 1 0\leq\gamma<1 0γ<1的常数。
  • 公式中 γ \gamma γ趋向于0表示agent主要考虑immediate reward,而 γ \gamma γ趋向于1表示agent将同时考虑future reward。

文章来源(参考博客):
作者: peghoty
出处: http://blog.csdn.net/peghoty/article/details/9361915

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值