WRSC无人帆船航行基本原理

本文详细解析了帆船的基本结构与航行原理,重点介绍了伯努利原理在帆船浮升力产生中的作用,以及如何通过调整帆与风的角度实现最佳航行。同时,深入探讨了无人帆船的自动控制机制,包括传感器的应用、帆船状态解算及舵与帆的智能控制策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无人帆船开源套件详解-帆船航行基础
《大学帆船运动基础教程》 吴有凯 中国海洋大学出版社

——
帆船(Sailboat)是利用风力前进的船。

1帆船结构

在中小型帆船中最常见的就是单桅帆,这种船上有一根桅杆和两面帆。

如图所示为纵帆船:
在这里插入图片描述
图中的稳向板龙骨 起到防止船体横移的作用。

稳向板和龙骨是两个不同的概念,前者可以升起或降下,后者固定。

船帆中最先着风的帆缘称作前缘,后部的船翼后缘称作帆的后缘
从前缘到后缘的假想水平线称作;从弦到最大吃水点的垂直距离称作弦深
充满空气以形成凹面弯曲的船帆的一面称作迎风面;向外吹以形成凸起形状的一面称作背风面
在这里插入图片描述

在模型帆船中,使用舵机取代人力操作舵叶的船柄,使用收缩机操控主帆缭绳。

帆的作用

2 *伯努利原理在帆船中的应用

*注意:实际上帆船航行原理仍存在争议,这里选取了通行的伯努利原理。

(物理学)帆船原理简述-李永乐

2.1浮升力

伯努利原理指在一个流体系统,比如气流、水流中,流速越快,流体产生的压强就越小。

下图为主帆俯视图,其工作原理与飞机机翼工作方式相似:
在这里插入图片描述

帆在风的作用下形成弧形,风吹过上半部分弧形区域时会被挤压,此面称为背风面;根据伯努利原理,空气的挤压造成空气流速变大,因而压强变小,因而吸引周围空气,这会导致空气进一步被挤压,形成循环(见下图);
而在迎风面,空气未被挤压,因而空气流速较慢,根据伯努利原理可知该区域压强较大,因而排斥周围空气,使空气保持不被挤压的状态,形成循环(见下图);
在这里插入图片描述

背风面压强小,迎风面压强大,由此形成压强差,造成一个垂直于帆的作用力,称作浮升力/托举力(见图)。
在这里插入图片描述

2.2帆船的前进

以图示情况为例,船处于近风行驶(此概念在后续章节中涉及),图中箭头表示风向。
帆受风后会形成垂直于帆的力即浮升力,可以将该力分解为两个方向,即向前力侧向力,侧向力会被水流和稳向板的作用所抵消,而向前力被保留,因而使帆船前进:
在这里插入图片描述
为了使帆船保持前进的最大航速,需要使向前力与船的航行方向一致,为此需要根据风向和航向调整风帆以充分利用伯努利效应。

3航行角度/航行方向

航行角度

3.1基本概念

如果把海平面分成360°,帆船的航行方向与风向则可用一个特定的角度来表示,共有六种基本航行方向,分别是正顶风、近迎风航行、小角度横风航行、横风航行、大角度横风航行、正顺风航行:
在这里插入图片描述

正顶风航行
帆船航向有所限制,当船头对准风时,帆只摆动而不工作,船帆不能工作区域被称为禁行区域(图中A区域),该区域通常位于正逆风左右各约45度角内,可用于船的停泊;在此区域以外的任何方向皆可航行。
风从船的左边吹来叫做左舷风航行(图中不包括禁行区域的右半圆);风从船的右边吹来叫做右舷风航行(图中不包括禁行区域的左半圆);

横风航行
是航行的最佳选择,此时船速达到最大,帆船完全进入了拉力状态,帆角应调整为45°。

正顺风航行
指航向和风吹过的方向完全一致。由于未利用伯努利效应,帆船完全处于被风推着走的行驶状态,难以达到最大航速;此外,在该状态下航行,可能导致过帆甚至翻船,因此不建议在该状态下航行。

3.2逆风航行

逆风航行(正顶风航行)时,帆船不能直接顶风行驶,但可以采取Z字形的路线到达目的地。
能够航行的与风的最小角度就是无法航行区域的边缘,称作近风行驶(近迎风航行)。变换受风的船舷称为迎风换舷(即让船头穿越风),一般来说换舷之后主帆会自动被带到另一侧;换舷越流畅,越能尽快抵达目的地,因为船处于一个迎风航行的状态,如果换舷速度慢了,船可能会停下来。
在迎风换舷的操作中,有右舷换左舷左舷换右舷之分,这取决于风从哪边吹来:若换舷船是左舷受风,即为左舷换右舷,换舷后,风就吹向船的另一边了。
在这里插入图片描述
一系列的迎风换舷被称为迎风行驶

3.3帆船航行中的风

风可分为 因船运动而产生的风、相对风和真风:
在这里插入图片描述
航行中帆的调整要朝着相对风的风向。

4无人帆船的自动控制原理

4.1传感器

无人帆船自动控制系统中应用到的传感器主要有三类:GPS,IMU,风向仪。

  1. GPS:提供帆船当前坐标
  2. IMU(Inertial Measurement Unit,惯性测量单元):提供航行速度和船头朝向。IMU一般包括三轴陀螺仪及三轴加速度计,某些9轴IMU还包括三轴磁力计。
  3. 风向仪:测定风向

借助这些传感器提供的数据信息,可以解算出无人帆船的当前状态,再根据其状态决定帆和舵的调整,产生相关控制信号:
在这里插入图片描述
各传感器功能:
在这里插入图片描述

4.2帆船状态的解算

大致过程如下:
在这里插入图片描述
设(x1,y1)为当前帆船的坐标,(x2,y2)为设定的目标点的坐标,则帆船位置与目标点两点之间的距离(dwp)为:
在这里插入图片描述
目标点和自然坐标系的夹角(hwp)为:
在这里插入图片描述
在上图基础上加入表示船头朝向和风向的箭头:
在这里插入图片描述
图中:

  1. α——帆船首尾线与自然坐标系夹角,即IMU值
  2. β——帆船首尾线与风向标夹角,即风向仪值
  3. θ——θ=α+β-hwp,即目标点与风向的夹角
  4. hwp——见前文,由公式获得

θ值决定了帆船处于正常状态还是处于换舷状态,一般情况下,我们规定当θ的绝对值小于90度时,帆船处于正常状态:
在这里插入图片描述

——————————————————————————
在无人帆船中,帆的控制和舵的控制是分开的,帆用来保持速度,舵用来保持航向。

4.3舵的控制

一般情况下,帆船是一直处于normal状态的,采用PID来实现帆船舵的控制;在换舷模式下,帆船需要打满舵。

帆船有两种换舷方式,前面已讨论到迎风(逆风)换舷,除此之外还有顺风换舷
在顺风换舷状态下,当为右舷转左舷时,打左满舵;当为左舷转右舷时,打右满舵;
在逆风换舷状态下,当为右舷转左舷时,打右满舵;当为左舷转右舷时,打左满舵。

以流程图来表示:
在这里插入图片描述

转舵方向与舵叶转向方向相反:
在这里插入图片描述

在下图中,标注了舵叶转向方向,图1为逆风左舷转右舷;图2为顺风左舷转右舷:
在这里插入图片描述
船舵效能取决于流过船舵水流的速度,如果游艇静止在水中,那么船舵则无法控制方向。
在直线航行的情况下,当船帆平衡时,在平静的水面上,无需使用船舵,仅仅通过调节船帆就可以使船保持直线。

4.4帆的控制

在帆船行驶中,为了获得最大的提升力,需要调整帆与风的最佳角度,帆位角是风向角的一半时帆上产生的力量最大
风向角指风向同帆船首尾连线之间的夹角:
在这里插入图片描述

帆位角是指帆位线(弦)与帆船首尾连线之间的夹角:
在这里插入图片描述
可以根据风向角改变帆的角度来调整风与帆的最佳角度,也可以直接改变航向。

下图为帆位和风向的关系图:
在这里插入图片描述
从图中可以看到,当风向值在180°-360°范围时,帆的开角同风向值为0-180°时一样。

在这里插入图片描述

### 使用Simulink开发无人帆船仿真模型 #### 一、概述 Simulink作为MATLAB旗下的强大仿真工具,在动态系统建模方面有着广泛应用,尤其适合用于复杂环境下的无人设备操作行为模拟。对于无人帆船而言,借助于Simulink能够创建精确反映其特性的数学物理模型,进而开展诸如回转试验和Z字形机动测试等活动,有助于深入探究船只操控特性并优化设计参数[^1]。 #### 二、建立基础模型 为了启动一个针对无人帆船的项目,通常会先定义基本结构框架,这涉及到选取合适的坐标系表示法(比如NED北东地参照系),设定初始条件(位置、速度等)。在此基础上引入FOSSen模型——一种专为小型水面航行器定制的动力学方程组集合体;此模型综合考量了质量分布特征、流体力学效应等多个层面的影响因子,能较好刻画目标对象的行为模式[^2]。 ```matlab % 定义常量与变量初始化部分代码片段 m = ...; % 质量 (kg) Ixx = ...; Iyy = ...; Izz = ...; % 惯性矩 (kg*m^2) % 初始化状态向量 [x y z phi theta psi u v w p q r]' stateVectorInit = zeros(12, 1); ``` #### 三、加入外部干扰源处理机制 考虑到现实环境中不可避免存在风浪等因素造成的随机波动,因此有必要在原有体系之上附加一套有效的抗扰策略。采用自适应滑模控制器便是其中一项可行方案,它允许即使面对不确定性和外界影响仍可保持良好的路径追踪精度[^3]。 ```matlab function controlInput = adaptiveSlidingModeController(errorSignal, ...) % 自适应滑模控制算法主体逻辑实现 end ``` #### 四、集成视觉伺服功能支持自动停靠作业 最后一步则是赋予整个平台智能化水平更高的能力,即让无人帆船具备识别码头轮廓并通过调整航向完成精准对接的功能。这一过程依赖计算机视觉技术获取实时图像数据,并据此计算出最优接近路线[^4]。 ```matlab % 基于OpenCV或其他库提取特征点匹配结果后更新导航指令 navigationCommand = updateDockingPath(imageFeaturesDetected); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值