量产导入 | KGD 是什么?

KGD 是什么?认识KGD定义、功能与应用实例

微电子科技产品设计约从 1990 年代初期,开始由成熟的混合微电路技术,转型至多芯片模块 (MCMs),以因应市场上日益提升的效能需求,以及体积轻巧便携的消费电子产品趋势。

如今异质整合芯片当道,为降低功耗、压缩体积,并改善效能,半导体先进封装技术走向量产,连带使 KGD 解决方案获得更高的讨论声量。

透过本篇文章,让我们一起了解究竟何谓 KGD Die?又为什么在半导体发展的必然趋势之下,KGD 得以扮演产业创新要角?

【白话文解析】Known Good「Die」

KGD 的英文全名是「Known Good Die」,着手探究其定义与应用之前,让我们先了解晶圆 (wafer)、晶粒 (die)、芯片 (chip) 三者的分别:

  • Wafer 晶圆

晶圆是一种圆形硅芯片,也是生产集成电路所用的载体,可加工制成各种电路组件结构、具特定电性功能的集成电路产品,而链接这些晶体管的基板就是「硅」;一片 wafer 可切割成数量不等的Die。

  • Die 晶粒

晶圆上的每个独立小块,都是一个晶圆颗粒体,切割后就成为一个晶粒 (die)。晶粒的外形通常为长方形或正方形,尺寸大小依不同功能需求、不同设计、不同制程而有所不同。

  • Chip 芯片

晶圆经过切割、测试,再将完好且稳定的晶粒取下、封装,便成为一般人熟悉的芯片 (chip),也就是集成电路 (IC)。集成电路发明后,技术也开始高速发展,最早期一个芯片只能塞进五个晶体管,发展到现代,可容纳数量已达数亿个晶体管。

何谓良品裸晶粒 (KGD/KGD Die)?

中文将 Known Good Die 翻译为「良品裸晶粒」,在业界常与 KGD Dram、KGD Die 等名词交互使用。

KGD 的完整定义是指:经过重重检测,已确认具有与封装后产品同等之质量水平、可靠程度,并符合指定功能、规格标准的裸晶粒或未经封装的芯片。半导体厂商采用 KGD 颗粒后,再与自家产品封装成单一芯片,进行最终测试,最后出货给需要的业者。

KGD 与一般晶体管最大的不同点在于,KGD 属于未封装的裸晶粒,故能因应系统级封装 (SiP)、多芯片封装 (MCP) 需求,与其他种类的裸晶堆栈使用,进行异质性整合;意即在同一封装中将芯片做 3D 立体堆栈,或者进行 2.5D 配置封装,将逻辑芯片、内存、射频组件等不同性质的电子零件整合,实现系统级之高效能、低功耗、高集成度,同时维持成品的精巧体积。

解读KGD产业应用

Area Array Interconnection Handbook 一书中比较了 KGD 应用如何影响不同等级之 MCM 封装,并归纳出两项原则:

  • KGD 适用于高产品价值、高装置计数 (device count),或者构造复杂、造价昂贵的 IC 设计。
  • KGD 可能不适用于生产成本极低、仅具备少量或构造简单的 IC 设计。

KGD如何影響不同等級之MCM封裝

Source: Bertin, Claude & Su, Lo-Soun & Horn, Jody. (2001). Known Good Die (KGD). 10.1007/978-1-4615-1389-6_4.

数字转型浪潮下,物联网 (IoT)、大数据和 AI 等新兴科技,走向商业化应用,连带推动半导体产业出现新一轮成长,芯片产品之创新需求强劲,程度更是前所未见。然而不可否认的是,传统摩尔定律 (Moore’s Law) 的 2D 制程微缩脚步正在趋缓。

从过往单纯的尺寸微缩,走向整合不同种类芯片的「More than Moore」, 晶圆制程微缩与先进封装的高阶需求,正催动更丰富的 KGD 产品应用,除了既有的笔电、平板计算机等行动装置、消费电子产品、数字视频转换盒、数字相机、智能穿戴装置等,未来在卫星定位、5G 通讯、智能工厂、车用电子等应用前景同样令人期待。

为什么大家纷纷采用KGD? 一窥KGD与芯片封测大趋势

面对半导体产业下个十年,芯片发展于精度、速度层面上的新挑战,由平面走向 3D、同时具备高度芯片整合能力的封装技术,俨然成为产品差异化关键,而 KGD 可以是 IC 产业链实现 PPACt(芯片功率、效能、单位面积成本、上市时间)技术蓝图的敲门砖,透过芯片级和系统级的改进与创新,提升长期获利成长的能力。

针对不同应用需求,目前市场上存在多种 KGD 解决方案,其中 4C 消费型电子业者采用「应用导向缓冲存储器 KGD」,除了能满足效能需求,更有机会取得下列几点产品优势:

  • 削减系统成本
  • 压缩产品体积
  • 降低系统功耗
  • 达成高速数据传输
  • 避免电磁干扰 (EMI)

不同于系统单芯片 (SoC) 将处理器、内存等多重功能,全数集结封装至单一系统芯片的做法,「应用导向缓冲存储器 KGD」透过 2.5D/3D 方式,堆栈不同种类之逻辑晶粒、内存晶粒、模拟晶粒、射频晶粒及闪存晶粒,完成异质性垂直整合。

KGD 是芯片组供货商向客户提供系统级封装 (SiP) 时的首选。

来自:钰创科技

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
为了理解水力压裂中裂缝生长的模型,并将其与传统的KGD模型进行比较,你可以利用Matlab强大的计算和可视化能力。KGD模型假设裂缝在无限大的板中对称生长,而我们这里要探讨的椭圆形模型则更贴近实际情况,考虑了裂缝受地层各向异性应力场影响的生长方式。通过Matlab编写脚本,可以实现这两种模型的模拟,并对结果进行分析比较。 参考资源链接:[骨折生长的二维与三维模型比较分析](https://wenku.csdn.net/doc/ea3nap60h2?spm=1055.2569.3001.10343) 首先,我们建立椭圆形生长模型的数学方程,使用Matlab求解这些偏微分方程。椭圆形裂缝生长模型的方程通常涉及流体流动和岩石力学的耦合,需要求解流体压力和岩石位移之间的关系。以下是求解椭圆形裂缝生长模型的Matlab脚本示例的关键步骤: 1. 定义裂缝的几何参数和物理参数,如裂缝的半长、半宽、流体粘度、岩石弹性模量等。 2. 编写函数来定义椭圆形模型的偏微分方程,并使用Matlab内置的偏微分方程求解器(如pdepe)来求解。 3. 根据模型求解结果,绘制裂缝的形态,并与KGD模型的结果进行对比分析。 在Matlab中,可以创建一个脚本文件,包含以下内容: ```matlab % 定义模型参数 parameters = struct('fluid_viscosity', 1, 'rock_modulus', 1, 'fracture_semi_length', 1, 'fracture_semi_width', 1); % 设置求解区间和网格 [x, t] = meshgrid.linspace(0, 10, 100), linspace(0, 10, 100); % 调用偏微分方程求解器 [u, p] = pdepe(m, @pdefun, @pdeic, @pdebc, x, t); % 绘制结果 plot(x, u); xlabel('裂缝半长'); ylabel('裂缝半宽'); title('椭圆形裂缝生长模型'); % 保存和比较KGD模型的结果 % ...(此处省略与KGD模型的比较代码) % 函数定义 function [c, f, s] = pdefun(x, t, u, DuDx) % 这里定义了裂缝生长的偏微分方程 % ... end function u0 = pdeic(x) % 初始条件 % ... end function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t) % 边界条件 % ... end ``` 在上述脚本中,我们首先定义了模型参数,然后设置了求解区间和网格。使用`pdepe`函数求解定义好的偏微分方程,并绘制了裂缝形态的图形。在比较部分,你可以添加相应的KGD模型求解和绘图代码,以便将两种模型的结果进行直观比较。 推荐查看《骨折生长的二维与三维模型比较分析》资源,其中不仅包含了对KGD和PKN模型的详细分析,还提供了对P3D模型的修改,使得模拟更符合实际情况。这些信息能够帮助你深入理解模型间的差异,并在Matlab中实现更加精确的模拟。此外,资源中提供了一系列Matlab脚本,这些脚本将为你的研究提供强大的支持,并帮助你更好地掌握水力压裂裂缝生长模型的模拟技术。 参考资源链接:[骨折生长的二维与三维模型比较分析](https://wenku.csdn.net/doc/ea3nap60h2?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TrustZone_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值