#VDB|RAG|AIGC#(含代码)向量检索工具FAISS的搭建和使用教程、经验分享

请添加图片描述

向量数据库Faiss是Facebook AI研究院开发的一种高效的相似性搜索和聚类的库。它能够快速处理大规模数据,并且支持在高维空间中进行相似性搜索。

本文将依faiss使用全流程来教学gpu版的faiss如何使用

整个使用流程是:

  1. faiss环境配置
  2. 获取词向量
  3. 词向量索引获取
  4. 索引-词向量文档存储
  5. 读取索引-词向量文档
  6. 向量匹配

环境配置

pip install faiss-cpu==1.7.3
# pip install faiss-gpu==1.7.2  # gpu安装

词向量获取

词向量模型可以从大规模文本嵌入基准 (MTEB) 排行榜中选取
可选

SentenceTransformer(‘lier007/xiaobu-embedding’)

FastTextEncoder( “infgrad/stella-base-zh-v2”)

FlagModel(‘BAAI/bge-large-zh-v1.5’,query_instruction_for_retrieval=“为这个句子生成表示以用于检索相关文章:”,
use_fp16=True)

等等……

通用加载方法:

model = SentenceTransformer('你的词向量模型')
sentence_embeddings  = model.encode(texts, normalize_embeddings)

存储

sentence_embeddings = 获取到的词向量[]
dimension = sentence_embeddings.shape[1]
inde
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值