百闻不如一用之妙算2g

本文详细记录了在妙算2G上安装Ubuntu,将32GB eMMC替换为128GB SSD作为根目录,以及配置Realsense D400系列摄像头的过程。同时,还提到了解决Python2编码问题和安装jtop的步骤。
摘要由CSDN通过智能技术生成

 记录一下配置妙算2g (当记录折腾arm架构设备了)目的:搞FASTLAB的Egoplanner

 

-1.arm架构安装ubuntu指导

server版加桌面:Getting the installation Right! Raspberry Pi 4 with Ubuntu 2-0.04 + ROS Noetic + Intel RealSense

 

#不使用 sudo apt-get install ubuntu-desktop 会缺wifi显示什么的
git clone https://github.com/wimpysworld/desktopify.git
cd desktopify
sudo ./desktopify --de ubuntu
#安装时间比较久

0.更改python2默认编码

sudo gedit /usr/lib/python2.7/site.py

setencoding() 

修改第  个 encoding="utf-8" and reboot

1.妙算2g emmc才32g ssd128g 把ssd挂在到/:

参考链接

manifold 是一个 MATLAB 工具包,用于处理流形学习和流形优化问题。在机器学习领域,流形学习是一种非线性数据分析方法,用于在高维数据中发现潜在的低维结构。manifold 工具包提供了多种流形学习的算法和技术,包括局部线性嵌入、等距映射、拉普拉斯特征映射等。这些算法可以帮助用户在处理高维数据时进行特征提取、降维和可视化。 使用 manifold 工具包,用户可以轻松地实现流形学习算法,并对其进行定制和扩展。例如,用户可以通过 manifold 工具包对数据进行降维,以便进行可视化和分类任务。此外,用户还可以使用 manifold 工具包进行流形优化,即在流形上进行最优化问题的求解。这对于在流形结构上进行聚类、分类和回归任务非常有用。 manifold 工具包还提供了丰富的文档和示例代码,帮助用户快速上手并了解如何使用其中的各种功能。此外,manifold 工具包还提供了与其他 MATLAB 工具箱和库的兼容性,如统计工具箱、优化工具箱等,使得用户可以更加灵活地将 manifold 与其他工具结合起来进行数据分析和机器学习任务。 综上所述,manifold 是一个强大的 MATLAB 工具包,为用户提供了丰富的流形学习算法和流形优化技术,帮助用户有效地处理高维数据并发现其中的潜在结构。无论用户是进行学术研究还是工程应用,manifold 都是一个非常有价值的工具包。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值