针对在线社交网络传输的鲁棒图像伪造检测
发布于2022 TIFS
源码链接:https://github.com/HighwayWu/ImageForensicsOSN
OSN:在线社交网络
摘要
OSN成为传播伪造图片、报道假新闻、传播谣言等的主要渠道。但OSN所采用的各种有损操作,如压缩和调整大小,给实现鲁棒图像伪造检测带来了巨大的挑战。为了对抗OSN共享的伪造,本文提出了一种新的鲁棒训练方案。
首先,设计了一个基线检测器,它在最近的证书伪造检测比赛中获得了第一名。然后对OSN引入的噪声进行了深入的分析,将其分解为两部分,即可预测噪声和不可见噪声,并分别建模。
- 前者模拟了OSN公开的(已知)操作所带来的噪声。
- 后者不仅完成了前一个操作,而且考虑了探测器本身的缺陷。
进一步将模型噪声纳入一个鲁棒的训练框架,显著提高了图像伪造检测器的鲁棒性。大量的实验结果验证了该方案相对于其他同类方案的优越性,尤其是在检测OSN传输的伪造信息方面。最后,为了促进图像伪造检测的未来发展,我们在现有的4个数据集的基础上,通过上传和下载4个最流行的OSN,构建了一个公共伪造数据集。
引言
挑战
随着互联网的蓬勃发展,在线社交网络(OSNs)已经成为信息传播的主导平台,其中图像占据了很大一部分。自然地,许多伪造的图像通过各种OSN传输,严重地影响了人们对重要文件(证书)、商业产品、政治问题等的看法。
在无处不在的OSN平台上,针对有损操作的鲁棒伪造检测的设计却鲜有研究。这样一个主题是非常重要的,因为这些有损操作会严重降低检测性能。如图1所示。目前最先进的算法能够准确地从原始伪造中检测出伪造区域,但在处理通过Facebook传输的伪造时,检测性能会严重下降。
为了减轻OSN的负面影响,最关键的问题是对OSN的有损通道引入的噪声进行分析和建模。然而,这是一个相当困难的问题,主要是因为目前的平台没有公开对传输图像的操作过程。虽然现有的一些作品揭示了OSN所采用的部分流程,但仍有许多未知操作,如Facebook的增强过滤、质量级别的分配机制、调整因子,甚至调整时使用的插值等,都是不清楚的。更重要的是,OSN经常调整它们的图像处理管道,这使得建模更加具有挑战性。
方法的提出
为了应对上述挑战,在本文中,我们旨在设计一种鲁棒的图像伪造检测方法,以克服OSN中的有损操作。我们首先设计了一个基线检测器,它在最近的证书伪造检测比赛中获得了第一名。然后针对OSN退化问题,提出了一种噪声建模方案,并将模拟噪声集成到一个鲁棒训练框架中。更具体地说,我们将OSN噪声分解为两个部分:1)可预测噪声和2)不可见噪声。前者用于模拟已知操作(如JPEG压缩和缩放)带来的可预测损失,其建模依赖于具有残差学习的深度神经网络(DNN)和嵌入的可微JPEG层。而后者是前者的补充和延伸,主要是针对OSNs所进行的不可知行为和/或各种OSNs在训练和测试中的差异。显然,从信号特征的角度建立一个合适的模型是不现实的。为了解决这个困难,我们将我们的观察从噪声的角度转移到检测器本身,只关注可能导致检测性能恶化的噪声。这种策略自然孕育了一种新的算法,利用对抗噪声的思想对不可见噪声进行建模,它本质上是一种难以察觉的扰动,会严重降低模型性能。
正如预期的那样,我们的鲁棒图像伪造检测方法显示出了良好的鲁棒性,特别是在OSN传输的情况下,其性能优于目前的几种最先进的算法。如图1所示为我们方案的检测结果实例,验证了我们的模型对OSN上传输的鲁棒性。最后,为了进一步的研究,我们基于现有的4个数据集,分别通过Facebook、Whatsapp、微博和微信平台手工上传和下载,构建了一个包含7000多个条目的公共伪造数据集。
主要贡献
- 设计了一个基线图像伪造检测器,它在最近的证书伪造检测比赛中获得了第一名。这个基线检测器也是这项工作的基石。
- 提出了一种针对OSN传输的鲁棒图像伪造检测的新训练方案。该训练方案不仅模拟了包含OSN的可预测噪声,而且通过新提出的算法融合了不可见噪声,进一步提高了检测器的鲁棒性。
- 与几种最先进的方法相比,我们提出的模型获得了更好的检测性能,特别是在对抗OSN上传输的情况下。
- 基于现有的4个数据集,分别通过Facebook、Whatsapp、微博、微信平台上传和下载,构建了一个公共伪造数据集。
OSN
几乎所有的OSN都以有损的方式操作上传的图像。这些有损操作所带来的噪声会严重影响取证方法的有效性。以Facebook为例,这些操作主要包括四个阶段:格式转换、调整大小、增强过滤和JPEG压缩。具体来说,首先将上传的图像转换为像素域,在像素域中使用截断来确保像素值在[0,255]之内。在此之后,如果图像的分辨率高于2048像素,则应用大小调整。然后,对图像中选定的部分块进行高度自适应的复杂增强滤波。由于这些增强滤波操作具有自适应性,所以要准确地知道它们是非常具有挑战性的。最后,对图像进行一轮JPEG压缩,并根据图像内容自适应确定质量因子(QF)。
通过分析[18]提供的数据集,Facebook使用的QF值在71 - 95之间,更详细的分布如图2(a)所示。此外,我们还在图2 (b)中展示了通过Facebook传输图像时像素值的变化情况。虽然不同OSN平台上的图像处理方式不同,但主流OSN的操作仍有许多相似之处[18]。