目录
一、视差计算原理
1.1 NCC视差匹配方法
归一化相关性(normalization cross-correlation),简称NCC。其是对图像内的像素点来构建一个nn的邻域作为匹配窗口,然后对目标像素位置同样的构建一个n
n大小的匹配窗口,对两个窗口进行相似度度量。对于两幅图像来说,在进行NCC计算之前要对图像进行处理,也就是讲两帧图像进行极线校正,使两帧图像的光心处于同一水平线上。通过校正极线可以方便NCC操作。
NCC计算公式如下:

为匹配窗口;
为原始图像的像素值;
I1(px,py)为原始窗口内像素的均值,为原始图像在目标图像上对应点位置在x方向上偏移d之后的像素值,I2(px+d,py)为目标图像匹配窗口像素均值。
公式通过归一化将匹配结果限制在 [-1,1]的范围内,可以非常方便得到判断匹配窗口相关程度:当NCC= -1,表示两个匹配窗口完全不相关,相反的当NCC=1时,表示两个匹配窗口相关程度非常高。
视差:左右双目图像中,两个匹配块中心像素的水平距离。
1.2 双目立体匹配
双目立体匹配流程如下:
1. 采集图像:通过标定好的双目相机采集图像,当然也可以用两个单目相机来组合成双目相机。(标定方法下次再说)
2. 极线校正:校正的目的是使两帧图像极线处于水平方向,或者说是使两帧图像的光心处于同一水平线上。通过校正极线可以方便后续的NCC操作。
3. 特征匹配:这里便是我们利用NCC做匹配的步骤啦,匹配方法如上所述,右视图中与左视图待测像素同一水平线

本文介绍了归一化相关性(NCC)视差匹配原理,包括极线校正和双目立体匹配流程。实验部分探讨了不同匹配窗口大小对结果的影响,发现窗口大小适中才能获得理想的视差图。最后,提到了图像大小对实验运行效率的影响。
最低0.47元/天 解锁文章
550





