第40章 施密特正交证明的准备阶段1 黎曼度量

原本想着接着讲施密特正交,结果发现不够诶,还得补充黎曼空间,伪黎曼空间,稍微补充一丁点变换群,弗莱纳公式之后是曲面论,废了废了,哈哈哈哈哈

之前用的是辛空间,就用它来接着深入,之前用坐标标识其中包含的个数,那么现在将这个概念分离出来,叫做度量。

之前的坐标还有运行的空间,这个以后再分离也是有数学名字的。

黎曼度量,先抄定义了,之后再解释。

|ζ|^2=G(ij)ζiζj,向量长度不依赖坐标系的选择,

称在每个点有定义的并且光滑依赖于这些点的切向量的一个正定2次型为这个空间的某个区域的一个黎曼度量,

接下来我就解释了哈,G(ij)表示的是位置,ζiζj这个就是个数也是G(ij)中的构成情况,它只统计了G(ij)位置中的确确实实存在的位置,不确定的那些是没用被体现的,比如辛空间的对角0就不算个数,但是ζiζj会把这个结构表示出来,虽然不会计数但依然会表示结构,也就是所谓正定2次型嘛,要是硬说这只是两个数,够不成正定2次型但是如果加入复数结构就可以构成,不用复数只是为了省事哈。那么这样ζiζj就可以描述出来最基础的构成结构

黎曼度量是一个转化的工具,像是内积其实也可以用黎曼度量来解释论,

继续用辛空间解释

度量得分开理解,度就是G(ij)的内部信息,量是和G(ij)一样的成分的信息。这里还是在G空间中,接着是将g空间描述转化成x0y坐标下的描述,像模就是x0y坐标下的长度描述,而|ζ|^2则是向量描述,

到了这里施密特正交其实也可以直接得出来,不过我还是多讲一些,

这里就稍微证明一下(a,b)/(b,b)*b

所以(a,b)是a在b上的投影,其实是改的方向,是b的个数,是将辛空间的总个数分块成每个都是b的大小,重新排列的正定2次型结构。

(b,b)是|b|^2,那么b/|b|^2就是表示单位度量下的b。

要是没看懂等后面会补充曲线论就容易理解了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挥刀杀G

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值