第一型曲面积分的第二型曲面积分的区别与联系【从几何知识的角度思考】

此处为曲线积分------>【问题思考总结】第一型曲线积分和第二型曲线积分的区别与联系【从几何知识的角度思考】

在这里插入图片描述

一二型曲面积分有什么区别?(了解)

一型曲面积分: 由dS进行表示。可以想像,dS是一个面积微元,被积函数可以想象成密度,那么这个第一型曲面积分就有物理意义即物质曲面的质量

-------------------注意:加粗的dxdydydzdzdx代表是有方向的,分正负的。--------------

二型曲线积分:由dxdydydzdzdx进行表示。设F(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k注:ijk)为方向向量,亦可表示为(dxdydydzdzdx))(此处ijk替换为类推,正确性存疑,恳请博友指正)。

其中,P(x,y,z)为xoy面的通量,Q(x,y,z)为yoz面的通量,R(x,y,z)为xoz面的通量,对F(x,y,z)积分可以得到通过某曲面总通量

两类曲面积分是如何进行转化的?(掌握)

一二型曲面积分的转化如下:
在这里插入图片描述
在这里插入图片描述
(注:cosα为曲面法向量与x轴的夹角的方向余弦,cosβ为曲面法向量与y轴的夹角的方向余弦,cosγ为曲面法向量与z轴的夹角的方向余弦)
原因可以简单的从以下的角度来理解:
在这里插入图片描述

即微分变量之间的投影关系。

其中,有两个我们不那么熟悉的变量需要注意:1. dS 2. cos(Q:为什么dS不带方向呢?A:因为方向隐含在cos中)

首先是dS,其转化如下:
在这里插入图片描述
这既可以用几何的角度来想像(通过三维面积勾股定理),也可以用代数的方法来计算(将图二公式两侧均进行平方并相加)。

然后是cos,其转化如下:
在这里插入图片描述

这既可以用几何的角度来想像(通过几何的邻比斜进行想象(我比较喜欢用cosγ进行想象)),也可以用代数的方法来计算(将图二公式两侧除以dS)。

简单应用

在这里插入图片描述

  • 19
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要求第二曲面积分,需要先确定曲面的参数方程以及曲面上的向量场,然后使用斯托克斯定理进行计算。下面以 Python 代码实现求第二曲面积分。 假设曲面的参数方程为 x(u,v)、y(u,v) 和 z(u,v),曲面上的向量场为 F(x,y,z),曲面的边界为 C,则第二曲面积分的计算公式为: ∬[S]rot F(x,y,z)·dS = ∫[C]F(x,y,z)·dr 其中,rot F(x,y,z) 表示向量场 F 的旋度,dS 表示曲面元素,· 表示向量的点积,dr 表示积分路径上的向量。 下面是 Python 代码实现: ```python import numpy as np def surface_integral(x, y, z, F, C): u = np.linspace(C[0], C[1], 1000) v = np.linspace(C[2], C[3], 1000) u_vals, v_vals = np.meshgrid(u, v) x_vals = x(u_vals, v_vals) y_vals = y(u_vals, v_vals) z_vals = z(u_vals, v_vals) F_vals = F(x_vals, y_vals, z_vals) r_u = np.array([np.gradient(x_vals, u, axis=0), np.gradient(y_vals, u, axis=0), np.gradient(z_vals, u, axis=0)]) r_v = np.array([np.gradient(x_vals, v, axis=1), np.gradient(y_vals, v, axis=1), np.gradient(z_vals, v, axis=1)]) rot_F = np.array([np.gradient(F_vals[2], y_vals, axis=0) - np.gradient(F_vals[1], z_vals, axis=0), np.gradient(F_vals[0], z_vals, axis=0) - np.gradient(F_vals[2], x_vals, axis=0), np.gradient(F_vals[1], x_vals, axis=0) - np.gradient(F_vals[0], y_vals, axis=0)]) integral = np.sum(F_vals[0] * r_u[1] + F_vals[1] * r_v[0] + rot_F[2] * r_u[0] * r_v[1]) * (u[1] - u[0]) return integral ``` 其中,x、y 和 z 分别为 x(u,v)、y(u,v) 和 z(u,v) 的函数表达式,F 是向量场,C 是曲面的边界。函数内部使用 np.linspace 创建等间距的积分节点,然后使用 np.gradient 计算偏导数和旋度,最后计算向量场在节点处的投影,并使用 np.sum 对所有节点的积分结果求和即可得到第二曲面积分的值。 第二曲面积分几何意义是,它表示向量场在曲面上的流量。对于一个物理量,比如电场、磁场等,可以通过第二曲面积分来计算其在曲面上的流量,即单位时间内流过曲面的量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值