五一杯数学建模C题完整论文:
问题分析
五一数模完整C论文https://www.jdmm.cc/file/2711941/
问题一解析
问题一聚焦于在满足客流需求的前提下,达成企业运营成本最小化与服务水平最大化的目标,进而制定列车开行方案。具体而言,要确定大交路区间列车的开行数量,以及小交路的运行区间和开行数量。此问题的关键在于,一方面要明确目标函数中列车数量和运行里程与乘客在车时间、等待时间的测算公式;另一方面,需清晰界定城市轨道列车的运行约束条件,如小交路折返点、列车发车间隔、追踪间隔、停站时间、运力和满载率以及通过车辆数量等,并将这些约束转化为数学语言,构建基于大小交路模式的列车开行方案混合整数线性规划模型。此外,设计该模型的求解算法也是关键所在。本文将采用改进的自适应遗传算法,通过编码、交叉和变异等操作,寻找近似最优解,从而规划小交路运行区间、开行列车数量以及大交路开行列车数量。
问题二解析
问题二是在问题一制定的列车开行方案基础上,同样以企业运营成本最小化、服务水平最大化为目标,同时尽量满足客流需求,制定等间隔的平行运行图。也就是要编制城市轨道列车运行时刻表,明确大小交路各车次于各站点的到达时间、出发时间以及停靠各站点的停站时间。该问题的关键在于明确与问题一的关联,即基于大小交路运营组织模式下的轨道列车开行方案与运行时刻表或运行图编制之间的联系。要清晰了解大小交路模式下列车的运行机制与流程,以此获取各时间节点。这一关键问题可转化为大小交路模式下的列车接续优化问题,因此需要明确相关接续约束,如车底接续的唯一性约束、接续时间约束以及折返作业的到发间隔约束等。在此基础上,构建基于大小交路模式的轨道列车接续优化模型,以得到优化后的列车时刻表并绘制运行图。
问题三解析
问题三着重于针对降低企业运营成本和提高服务水平提出有效的方法或建议,重点是基于客流和车站数据提供量化分析支持。此问题需要对赛题附件中提供的相关数据,如车站数据、区间运行时间数据、OD客流数据以及断面客流数据等进行量化分析,可借助Origin等专业绘图软件进行可视化处理,并采用评价指标对轨道交通线路客流分布特征进行量化评价,进而提出具有建设性的建议。
问题背景与目标
本问题旨在基于 2024.7.11 - 2024.7.20 期间附件 1 的用户与博主历史交互数据,预测 2024.7.21 各博主新增关注数。为实现这一目标,我们选用 Temporal Fusion Transformer (TFT) 算法构建预测模型,该算法能通过多头注意力机制识别关键时间步,利用门控机制过滤无关特征,有效捕捉长期依赖、短期周期性和特征重要性。
影响因素与假设
- 互动滞后效应:用户通常不会即时关注博主,往往在多次观看、点赞、评论后才会关注,即前置互动行为对关注行为存在滞后影响。基于此,我们假设用户的关注行为由前置互动行为触发且存在滞后效应,这有助于准确捕捉用户关注行为的触发机制,使模型更贴合实际情况。
- 冷启动博主:新博主因历史关注数据少难以直接预测,需借助同类博主(内容类型相同、粉丝量区间相近)的平均转化率估算其基础关注数。所以假设冷启动博主的关注数可通过同类博主的平均转化率估算,为冷启动博主的预测提供了一种可行的方法。
- 周期性与趋势性:博主关注数受多种周期性因素影响,如周末用户活跃度高,关注数可能增长;同时也可能因内容质量变化等呈现持续增长或衰减趋势。因此假设博主的新增关注数存在周周期特征且可能呈现持续增长或衰减的趋势,符合社交媒体用户行为的一般规律,能有效利用这种周期性和趋势性进行预测。
- 数据完整性:假设附件 1 中 2024.7.11 - 2024.7.20 的互动数据无缺失或错误(已通过数据清洗处理),保证了基于这些数据进行的统计分析和模型训练的准确性和可靠性。
- 用户行为一致性:假设在分析时间段内,用户对不同博主的行为模式具有相对一致性,不会出现突然且无规律的行为变化,这样基于历史行为的分析和预测才有意义。
- 平台环境稳定性:假设平台的推荐机制、用户群体特征等外部环境在分析时间段内相对稳定,不会出现重大变革影响用户与博主的互动关系,否则历史数据的参考价值会大打折扣。