Pytorch的冻结以及解冻

本文介绍了如何在PyTorch中加载和微调预训练模型,如ResNet和AlexNet,以适应特定任务。通过剔除非匹配层并调整层参数,如改变全连接层的输出节点数,来适应不同类别数。此外,还提出了逐层解冻的训练策略,允许从底层开始逐步解冻模型以进行训练。这种方法可以帮助在保留预训练权重优势的同时,优化模型以适应新的任务需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

加载部分预训练模型

其实大多数时候我们需要根据我们的任务调节我们的模型,所以很难保证模型和公开的模型完全一样,但是预训练模型的参数确实有助于提高训练的准确率,为了结合二者的优点,就需要我们加载部分预训练模型。

pretrained_dict = model_zoo.load_url(model_urls['resnet152'])
model_dict = model.state_dict()
# 将pretrained_dict里不属于model_dict的键剔除掉
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 更新现有的model_dict
model_dict.update(pretrained_dict)
# 加载我们真正需要的state_dict
model.load_state_dict(model_dict)

因为需要剔除原模型中不匹配的键,也就是层的名字,所以我们的新模型改变了的层需要和原模型对应层的名字不一样,比如:resnet最后一层的名字是fc(PyTorch中),那么我们修改过的resnet的最后一层就不能取这个名字,可以叫fc_


微改基础模型

PyTorch中的torchvision里已经有很多常用的模型了,可以直接调用:

  • AlexNet
  • VGG
  • ResNet
  • SqueezeNet
  • DenseNet
import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
squeezenet = models.squeezenet1_0()
densenet = models.densenet_161()

但是对于我们的任务而言有些层并不是直接能用,需要我们微微改一下,比如,resnet最后的全连接层是分1000类,而我们只有21类;又比如,resnet第一层卷积接收的通道是3, 我们可能输入图片的通道是4,那么可以通过以下方法修改:

resnet.conv1 = nn.Conv2d(4, 64, kernel_size=7, stride=2, padding=3, bias=False)
resnet.fc = nn.Linear(2048, 21)

逐层解冻(在 ECCV2020 上提出的训练方法)

加载一个FeatureExtractor

以 densenet 的 dense block 为例:

dense = densenet121(pretrained=True)
self.loss_network = nn.Sequential(*list(dense.features)[:5])
self.loss_network.apply(add_sn)
for param in self.loss_network.parameters():
param.requires_grad = False

# vgg=vgg16(pretrained=True)
# self.loss_network = nn.Sequential(*list(vgg.features)[:16]).eval()
# self.loss_network.apply(add_sn)
# for param in self.loss_network.parameters():
#     param.requires_grad = True

设置一个 list,储存冻结的层,方便后期解冻

self.grad = []
for name, value in self.loss_network.named_parameters():
   	print('name: {0},\t grad: {1}'.format(name, value.requires_grad))
if value.requires_grad == False:
  	self.grad.append(name)

解冻,unfreeze1 函数(自底向上解冻一层)

def unfreeze1(self):
		if len(self.grad)==0:
				print("All of network have been unfreeze!")
    		return
 		self.grad.pop()
  	print("-------------------")
  	for name, value in self.loss_network.named_parameters():
    		if name not in self.grad:
      			value.requires_grad = True
		for name, value in self.loss_network.named_parameters():
  		print('name: {0},\t grad: {1}'.format(name, value.requires_grad))
		print("---------------------")

展示冻结情况:

def showfreeze(self):
		for i in self.grad:
    		print(i)
		print("-------------------")

训练中解冻

network.unfreeze1()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风信子的猫Redamancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值