【地图构建(1)】占用栅格地图构建Occupancy grid mapping

本文介绍了使用概率机器人理论在已知位姿情况下构建栅格地图的方法,包括静态二值贝叶斯滤波算法的应用,以及声纳和激光传感器模型在反演测量中的角色。通过置信度计算确定地图单元的占用状态,优化了地图构建过程。

本文主要参考Probabilistic Robotics《概率机器人》一书。
其他参考:
弗莱堡大学课件
博客
含代码博客

0.引言

位姿已知的地图构建(mapping with known poses)的定义:已知机器人的位姿 x 1 : t x_{1:t} x1:t和传感器的观测数据 z 1 : t z_{1:t} z1:t求解最可能的地图 m ∗ = arg ⁡ max ⁡ m P ( m ∣ x 1 : t , z 1 : t ) m^*=\arg\max_mP(m|x_{1:t},z_{1:t}) m=argmaxmP(mx1:t,z1:t)
占用栅格地图,顾名思义地图形式是栅格形式,即将环境分为小格子
在这里插入图片描述 m i m_i mi表示第i个栅格单元,占用栅格地图将空间分割为有限多个栅格地图 m = { m i } m=\{m_i\} m={ mi},每个 m i m_i mi与一个二值占用变量相对应,该变量指示出该单元是否被占用,被占用设为1,未被占用设为0。 p ( m i ) p(m_i) p(mi)表示该栅格单元被占用的可能性。
为所有的栅格建立后验概率 p ( m i ∣ z 1 : t , x 1 : t ) p(m_i|z_{1:t},x_{1:t}) p(miz1:t,x1:t),那么构建地图公式变为

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值