本文主要参考Probabilistic Robotics《概率机器人》一书。
其他参考:
弗莱堡大学课件
博客
含代码博客
0.引言
位姿已知的地图构建(mapping with known poses)的定义:已知机器人的位姿 x 1 : t x_{1:t} x1:t和传感器的观测数据 z 1 : t z_{1:t} z1:t求解最可能的地图 m ∗ = arg max m P ( m ∣ x 1 : t , z 1 : t ) m^*=\arg\max_mP(m|x_{1:t},z_{1:t}) m∗=argmaxmP(m∣x1:t,z1:t)
占用栅格地图,顾名思义地图形式是栅格形式,即将环境分为小格子
m i m_i mi表示第i个栅格单元,占用栅格地图将空间分割为有限多个栅格地图 m = { m i } m=\{m_i\} m={
mi},每个 m i m_i mi与一个二值占用变量相对应,该变量指示出该单元是否被占用,被占用设为1,未被占用设为0。 p ( m i ) p(m_i) p(mi)表示该栅格单元被占用的可能性。
为所有的栅格建立后验概率 p ( m i ∣ z 1 : t , x 1 : t ) p(m_i|z_{1:t},x_{1:t}) p(mi∣z1:t,x1:t),那么构建地图公式变为

本文介绍了使用概率机器人理论在已知位姿情况下构建栅格地图的方法,包括静态二值贝叶斯滤波算法的应用,以及声纳和激光传感器模型在反演测量中的角色。通过置信度计算确定地图单元的占用状态,优化了地图构建过程。
最低0.47元/天 解锁文章
1368

被折叠的 条评论
为什么被折叠?



