香橙派aipro 散热风扇风速调节

本文介绍了如何在AI开发板发烫时,通过执行/opt/opi_test/fan下的脚本来调整散热风扇的风速,包括手动模式(最大风速)和自动模式的切换,以及自定义脚本实现风扇控制的详细步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

当进行模型推理或者模型转换时开发板明显变烫,这时就可以考虑将散热风扇风速调大些。

实际操作

在 /opt/opi_test/fan 目录下有两个与风扇风速相关的脚本,可以尝试执行,并结合昇腾文档就比较好理解。
当开发板发烫,我的操作是:

# 设置为手动模式
sudo npu-smi set -t pwm-mode -d 0
# 设置风速(最后那个100表示调到最大,0风速停止工作。)
sudo npu-smi set -t pwm-duty-ratio -d 100
# 当温度正常时再设置为自动模型
sudo npu-smi set -t pwm-mode -d 1

在自动模式下我查看风扇转速是15

sudo npu-smi info -t pwm-duty-ratio
        pwm-duty-ratio(%)              : 15

脚本

自己写了一个用于查看和调整风扇风速的脚本。

#!/bin/bash
fan=$1

# 检查当前用户是否为root
if [ "$(id -u)" != "0" ]; then
    echo "错误: 需要root权限来运行此脚本。"
    exit 1
fi

if [ "$fan" = "ratio" ]; then
    # 当输入是“ratio”时查询当前风速。
    sudo npu-smi info -t pwm-mode
    sudo npu-smi info -t pwm-duty-ratio
elif ! echo "$fan" | grep -q '^[0-9]\+$'; then
    # 当输入不是正整数时设置为自动模式。
    sudo npu-smi set -t pwm-mode -d 1
elif [ "$fan" -ge 0 -a "$fan" -le 100 ];then
    # 当输入是[0, 100]范围的正整数时设置为手动模式,并设置风速。
    sudo npu-smi set -t pwm-mode -d 0
    sudo npu-smi set -t pwm-duty-ratio -d $fan
else
    # 输入是其它情况时设置为自动模式。
    sudo npu-smi set -t pwm-mode -d 1
fi

参考

Atlas A2 智能边缘硬件 23.0.RC3 npu-smi 命令参考 02——设置风扇模式

Atlas A2 智能边缘硬件 23.0.RC3 npu-smi 命令参考 02——设置风扇调速比

### 香橙 AIpro 的实际应用案例与教程 #### 1. 大语言模型实战教程 香橙 AIpro 可用于部署大型语言模型 (LLM),这得益于其强大的硬件支持。具体来说,这块开发板能够运行复杂的神经网络推理任务。通过详细的保姆级教学指南[^2],用户可以从零开始学习如何在该平台上部署并优化 LLMs。 #### 2. 物体识别与分类 利用内置的高性能 AI 处理器,香橙 AIpro 能够轻松处理图像数据,实现高效的物体检测和分类功能。例如,在智能家居监控系统中,设备可以通过摄像头捕捉视频流,并实时分析其中的内容,识别人脸或其他特定目标对象[^3]。 ```python import cv2 from orangepi_ai import ObjectDetector detector = ObjectDetector(model='ssd_mobilenet_v2') cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() results = detector.detect(frame) for obj in results: label = obj['label'] score = obj['score'] box = obj['box'] # Draw bounding boxes and labels on the image cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2) cv2.putText(frame, f'{label}: {score:.2f}', (box[0], box[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) cv2.imshow('Object Detection', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 此代码片段展示了如何使用预训练好的 SSD MobileNet V2 模型来进行基本的对象检测操作。 #### 3. 官方样例与项目实践 除了上述应用场景外,华为昇腾社区还提供了丰富的官方样例程序和完整的项目指导材料,帮助开发者快速上手并深入理解这款产品的特性和优势。这些资源涵盖了从基础入门到高级技巧等多个层次的学习路径。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值