自动驾驶的基本过程分为三部分:感知决策、控制。其关键技术为自动驾驶的软件算法与模型,通过融合各个传感器的数据不同的算法和支撑软件计算得到所需的自动驾驶方案。自动驾驶中的环境感知指对干环境的场景理解能力,例如境碍物的类型道路标志及标线,行车车辆的检测,交通信息等数据的分类。定位是对感知结果的后处理,通过定位功能帮助车辆了解其相对于所处环境的位置。环境感知需要通过多传感器获取大量的周围环境信息,确保对车辆周围环境的正确理解,并基于此做出相应的规划和决策。目前两种主流技术路线,一种是以特斯拉为代表的以摄像头为主导的多传感器融合方案;另一种是以谷歌、百度为代表的以激光雷达为主导,其他传感器为辅助的技术方案。决策是依据驾驶场景认知态势图,根据驾驶需求进行任务决策,接着能够在避开存在的障碍物前提之下,通过一些特定的约束条件,规划出两点之间多条可以选择的安全路径,并在这些路径当中选择一条最优的路径,决策出车辆行驶轨迹。执行系统则为执行驾驶指令控制车辆状态,如车辆的纵向控制及车辆的驱动和制动控制,横向控制是方向盘角度的调整以及轮胎力的控制,实现了纵向和横向自动控制,就可以按给定目标和约束自动控制车运行。
自动驾驶软件算法解决方案主要厂商有提供全场景解决方案的驭势科技、百度、小马智行、东软睿驰等,也有提供特定场景下解决方案的禾多科技新石器、纵目科技等厂商。
百度的自动驾驶方案Apollo发展相对较早,以开放平台Apollo为例,目前版本已更迭至6.0,其解决方案包括了Robotaxi方案面向BRT快速公交的Minibus20方案、面向最后一公里的自主泊车方案、面向低成本低速微型车方案以及自动驾驶云等关键技术。
此外,前装自动驾驶方案商,如东软睿驰德赛西威、经纬恒润纵目等公司也面向车厂提供前行系,泊车系自动驾驶产品。
整车企业在自动驾驶软件算法上的布局方式也略有不同。传统车企积极与科技公司、Tier1展开合作在技术创新领域上进行提前规划与布局,如长城汽车、吉利汽车长安汽车等车型积极搭载驾驶辅助系统:造车新势力车厂则选择自研或联合开发L25级及以上的解决方案,并应用于新车型上,如搭载高级辅助驾驶系统NioPilot的蔚来汽车搭载高级辅助驾驶系统XPilot的小鹏汽车等。但由于单车感知精度受限、计算能力与认知范围有局限,仅靠单车内部解决完全自动驾驶的未来解决方案成本较高,车企和科技企业也在积极探索与车联网结合,用车路协同的方式来实现自动驾驶的解决方案。
从软件功能开发的角度上讲,下一代域控制器架构是实现阶段性的智能驾驶行车-泊车一体化控制策略。满足L2/L3高等级的驾驶辅助功能(智能行车-泊车)需求将集中到一个ECU对行车-泊车等基准控制功能进行有效处理。并且该集中式方案在网络安全,冗余备份等方面更具优势,在技术上也更具有挑战性。智能行车-泊车全域解决方案设计的思想主要集中在以集中式域控做为总体感知处理端口以不同的SOC对其中的行车和泊车模块进行轨迹规划决策,且过程中综合考虑驾驶员输入的行车/泊车控制指令,最终参照一定仲裁的策略对其行车和泊车进行执、控制。
1、感知
实现自动驾驶,需要优先解决一个问题:行车安全。为了确保自动驾驶车辆在不同场景下均可以做出正确判断,需要实现对周围环境信息的实时动态获取和识别,这些信息包括但不限于自车的状态、交通流信息道路状况、交通标志等以满足车辆决策系统的需求。换言之环境感知起着类似人类驾驶员“眼睛”“耳朵”的作用,是实现自动驾驶的前提条件。
目前现有的车载传感器包含激光雷达、毫米波雷达摄像头超声波雷达等。传感器负责采集自动驾驶汽车所需要的信息比如汽车自身行驶环境等,为自动驾驶汽车的安全行驶提供可靠的决策依据。环境感知技术有两种技术路线,一种是以摄像机为主导的多传感器融合方案,典型代表是特斯拉。另一种是以激光雷达为主导,其他传感器为辅助的技术方案,典型企业代表如谷歌、百度等。
(1)激光雷达--探测距离远,精度高,天气影响大
激光雷达实时感应周边环境信息形成高清立体图形。激光雷达的工作原理是,激光发射器发射脉冲调制光线,观察反射光线自动驾驶环境感知系统研究与发射光线间的时间差来计算距离,通过扫描或
(2)毫米波雷达一全天候服务,但精度相对低
(3)摄像头一最像人的眼睛
摄像头的安装位置有前视侧视后视和内置。主要用于前向碰撞预警系统、车道偏离警示系统、交通标志识别系统停车辅助系统、盲点侦测系统。摄像头通常分为单目摄像头和双目摄像头两种,通常情况下单目车载摄像头的视角为50°-60可视距离为100m-200m。而双目摄像头能够通过模拟人类的视觉成像方式进行3D成像,比较两个摄像头获得的不同图像信号,识别物体更可靠,通过算法得出物体的距离速度信息等。与激光雷达相比摄像头能在白天使用自然光;可以识别汽车交通灯的颜色:在光照充足的条件下,可以识别很远的物体,有更高的分辨率,而且成本较低,但是它也存在一些缺点比如容易受到雨雪天气和光照的影响,光照的变化对其识别精度的影响较大,而且目前的摄像头技术对于静态图像中的远方物体难以识别。
(4)超声波雷达一低成本,距离近
超声波雷达是利用声波的传播来提取环境信息的。首先发出高频声波,并且接收物体反射来的回波,最后计算从发送信号到收到回波的时间间隔,从而确定物体的距离。超声波雷达的成本较低,重量轻功耗低,但是探测距离很近,适合测量02m-4m左右的距离。
可以看出,自动驾驶车辆感知环境的传感器繁多,不同传感器的原理、功能各不相同,在不同的使用场景里可以发挥各自优势,难以互相替代。比如,激光雷达安装在车顶,那么车辅底部是无法测量的圆形区域。未来要实现智能驾驶、无人驾驶,仅靠单一的传感器是无法实现的。一个重要的趋势是将不同的传感器融合在一起,使传感器之间可以优势互补,最终提升精确性。
(5)多传感器混合式多级数据融合架构技术
多传感器数据融合技术是一项实践性比较强的应用技术,涉及到信号处理、计算机技术、概率统计模式识别、统计数学等多口学科。多传感器数据融合就像一个框架,把多传感器及其观测信息通过合适的算法进行支配和使用,以获得满意的结果。多传感器系统是数据融合的硬件基础,而各种原始数据就是数据融合的对象综合处理和归类分析就是数据融合最终的任务。多传感器数据融合的主要步骤如下:
1)通过多个传感器对待测目标进行测量,获得有效数据;
2)对各个传感器的采集数据进行特征点提取,得到想要的关于待测目标特征值:
3)对于得到的特征值进行模式识别处理,比如使用统计概率的方法判定其目标特点,以完成各传感器关于目标的确切描述;
4)将同一目标的描述数据进行整理归类;
5)最后利用融合算法将同一目标的特征进行融合,得到该目标的确切描述。
多传感器融合在结构上按其在融合系统中信息处理的抽象程度,主要划分为三个层次,数据层融合特征层融合和决策层融合:
1)数据层融合:也称像素级融合首先将传感器的观测数据融合然后从融合的数据中提取特征向量并进行判断识别融合过程如下图所示数据层融合需要传感器是同质的(传感器观测的是同一物理现象)如果多个传感器是异质的(观测的不是同一个物理量),那么数据只能在特征层或决策层进行融合。数据层融合不存在数据丢失的问题,得到的结果也是最准确的,但计算量大且对系统通信带宽的要求很高。
2)特征层融合:特征层融合属于中间层次先从每种传感器提供的观测数据中提取的有代表性的特征这些特征融合成单一的特征向量,然后运用模式识别的方法进行处理,融合过程如下图所示。这种方法的计算量及对通信带宽的要求相对降低,但由于部分数据的舍弃使其准确性有所下降。
3)决策层融合:决策层融合属于高层次的融合由于对传感器的数据进行了浓缩,这种方法产生的结果相对而言最不准确,但它的计算量及对通信带宽的要求最低,融合过程如下图所示
对于特定的多传感器融合系统工程应用,应综合考虑传感器的性能、系统的计算能力、通信带宽、期望的准确率以及资金能力等因素,以确定哪种层次是最优的。另外,在一个系统中,也可能同时在不同的融合层次上进行融合。
本文节选自中国汽车基础软件生态委员会(AUTOSEMO)本月发中国汽车基础软件发展白皮书2.0》,如需获得完整报告,请下载。资料下载链接:https://pan.baidu.com/s/1rOTeFu4oJVRNjIzTcIOaVQ 提取码:d72b
原文链接:https://bbs.z-onesoft.com/omp/community/front/api/page/mainTz?articleId=7588