opencv——形态学变换_开闭运算

本文深入探讨了OpenCV中的形态学变换,包括开运算和闭运算的概念及应用。首先介绍了开运算,然后通过实例加深了理解。接着讲解了闭运算,同样配合实例帮助读者更好地掌握其原理。
摘要由CSDN通过智能技术生成

1、开运算

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""
    开运算:先腐蚀后膨胀, 去除噪声,去除白色小点、空洞
    闭运算:先膨胀后腐蚀, 用来填充前景物体的小黑点
    形态学梯度:膨胀减去腐蚀, 可以得到前景物体的轮廓
    礼帽:原图减去开运算
    黑帽:闭运算减去原图

    使用函数morphologyEx()进行形态学其他操作
    函数原型为:morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
        op参数:
            cv.MORPH_OPEN:开运算
            cv.MORPH_CLOSE:闭运算
            cv.MORPH_GRADIENT:形态学梯度
            cv.MORPH_TOPHAT:礼帽
            cv.MORPH_BLACKHAT:黑帽
        kernel:内核或结构化内核大小
            使用getStructuringElement(shape, ksize[, anchor]) -> retval获得结构化内核
                shape:
                    cv.MORPH_RECT  矩形结构化核
                    cv.MORPH_ELLIPSE 椭圆结构化核
                    cv.MORPH_CROSS 交叉结构化核
                ksize:
                    指定结构化核大小
                anchor:默认为Point(-1,-1),内核中心点。省略时为默认值
        anchor:默认为Point(-1,-1),内核中心点。省略时为默认值。
        iterations:腐蚀次数。省略时为默认值1。
        borderType:推断边缘类型,具体参见borderInterpolate函数。默认值为BORDER_DEFAULT 边缘值拷贝
        borderValue:边缘值,具体可参见createMorphoogyFilter函数,可省略
"""

'''
结构化元素
# Rectangular Kernel
>>> cv.getStructuringElement(cv.MORPH_RECT,(5,5))
array([[1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1]], dtype=uint8)
# Elliptical Kernel
>>> cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
array([[0, 0, 1, 0, 0],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [0, 0, 1, 0, 0]], dtype=uint8)
# Cross-shaped Kernel
>>> cv.getStructuringElement(cv.MORPH_CROSS,(5,5))
array([[0, 0, 1, 0, 0],
       [0, 0, 1, 0, 0],
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值