线性代数的本质5 行列式

目录

一、 矩阵的集合意义

1. 普通矩阵

2. 剪切矩阵

二、行列式(二维空间)

1. 行列式的定义

 2. 举例应用

3. 行列式为负值的情况

4. 行列式的计算

 三、行列式(三维空间)


一、 矩阵的集合意义

1. 普通矩阵

\begin{bmatrix} 3 & 0\\ 0 & 2 \end{bmatrix} 矩阵代表i向量向右延长3个单位长度,j向量向上延长2个单位长度,因此两个向量围成的面积就从原来的1*1=1变成了2*3=6

2. 剪切矩阵

剪切矩阵代表i向量不变,j向量的终点变为(1,1),因此原来围成的面积为1的正方形被拉伸成了一个平行四边形,但是面积还是=1。

二、行列式(二维空间)

1. 行列式的定义

一个线性变换对面积产生的改变的比例叫做这个变换的行列式

 2. 举例应用

  • 把空间压缩了0.5 ==> 该矩阵对应的行列式=0.5 

  •  行列式=0  ==>  将平面压缩到一条线上,甚至一个点上

  •  如何确定矩阵所代表的变换是否将空间压缩到了更小的维度上?  检验行列式是否为0

3. 行列式为负值的情况

  • 二维空间平面被镜像反转的时候,得到的行列式值为负数,但是行列式的绝对值依旧代表区域面积的缩放比例 

4. 行列式的计算

 公式推导:

(1)若副对角线为0,则说明i向量向右伸长了a,j向量向上伸长了d,故围成的面积就变成了a*d=ad

 (2)副对角线上有一个元素不为0,则围成的形状是平行四边形,面积也不变

 (3)行列式元素均不为0:i和j围成的平行四边形面积计算方法如图所示,最终得出的公式为ad-bc

思考:

对向量进行M1和M2的线性变换后的面积的缩放比例=先进行M1的线性变换后的缩放比例*再进行M2的线性变换后的缩放比例

 

 三、行列式(三维空间)

类比于二维空间的面积缩放,三维空间中对应体积的缩放

 1*1*1的立方体

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值