【超详细】跑通YOLOv8之深度学习环境配置3-YOLOv8安装

环境配置3下载安装内容如下:

1、配置清华等镜像源
2、创建环境
3、下载安装Pytorch
4、下载安装YOLOv8运行环境

版本:Python=3.8(要求>=3.8),torch1.12.0+cu113(要求>=1.8)

1、配置清华等镜像源

1.1 配置清华镜像源
直接在anaconda prompt(也可win+R,cmd)下输入以下代码即可。
代码如下:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
#设置搜索时显示通道地址
conda config --set show_channel_urls yes

1.2 配置中科大镜像源
代码如下:

conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
 #设置搜索时显示通道地址
conda config --set show_channel_urls yes

1.3 配置上海交通大学镜像源
命令如下:

conda config --add channels https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.sjtug.sjtu.edu.cn/anaconda/cloud/conda-forge/
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes

1.4 显示添加的镜像源

conda config --show channels

在这里插入图片描述
1.5 删除镜像源

conda config --remove-key channels

2、创建环境

2.1 打开anaconda prompt
2.2 输入命令创建新的环境(记得写y进行下一步):

# 这里环境名可以先用yolo, conda create -n yolo python=3.8
conda create -n 环境名 python=3.8

2.3 激活环境:

activate yolo

2.4 退出环境:

deactivate yolo

3、下载安装Pytorch

3.1 进入Pytorch官网,并下翻找到先前版本位置
官网:https://pytorch.org/
在这里插入图片描述
3.2 找到CUDA11.3(前章安装版本)对应的安装命令,这里选择一个Pytorch1.12.0(YOLOv8要求>=1.8版本),复制到终端运行,下载安装时间较长。
命令如下:
在这里插入图片描述

# 方式1:
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
# 方式2:(https://pytorch.org/get-started/previous-versions/)
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113

在这里插入图片描述

# 验证下载安装是否为gpu版:
import torch
print(torch.__version__)  # 打印torch版本
print(torch.cuda.is_available())  # True即为成功

print(torch.version.cuda)
print(torch.backends.cudnn.version())

在这里插入图片描述

4、下载安装YOLOv8运行环境

4.1 下载源代码,并解压
YOLOv8官网https://github.com/ultralytics/ultralytics
在这里插入图片描述

4.2 下载安装YOLOv8运行环境

# 一条命令即可
pip install ultralytics

4.3 终端验证和运行YOLOv8
验证代码如下:

# 方式1:直接运行(可不用下载源码)
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

# 方式2:手动下载源码和权重再运行
# cd进入对应源码文件夹
# 会自动下载yolov8n.pt权重文件,若下载失败,去官网手动下载(点击Model对应名字),并放在主目录下
# 图像源码文件夹自带
yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg'

显示saved即为成功运行!
在这里插入图片描述
预测结果如下:
在这里插入图片描述

### 配置和运行 YOLOv5 深度学习模型 #### 安装依赖库 为了顺利安装并运行YOLOv5,需先确保环境已准备好必要的Python包。常情况下,在Linux或Windows子系统环境下操作更为便捷。 ```bash pip install -r requirements.txt ``` 此命令会依据`requirements.txt`文件自动下载所需的全部软件包[^1]。 #### 下载预训练权重 对于初次使用者来说,最简单的方式是从官方仓库获取预训练好的权重文件。这些权重是在大规模公开数据集(如COCO)上训练得到的结果,能够帮助快速启动项目而不需要从头开始训练整个网络结构。 ```python import torch model = torch.hub.load('ultralytics/yolov5', 'yolov5s') ``` 上述代码片段展示了怎样利用PyTorch Hub接口加载小型版本(`yolov5s`)的YOLOv5模型及其对应的预训练参数[^3]。 #### 准备数据集与标注 当目标是特定应用场景下的物体检测任务时,则需要准备相应的图片资料以及其对应的边界框位置信息。按照前述方法提到的技术路线,可以考虑采用自动化工具辅助完成初步标记工作,并结合人工审核提高准确性。这一步骤有助于显著降低手动创建高质量标签所需的时间成本。 #### 调整配置文件 针对不同类型的检测需求,可能还需要调整默认设置以适应具体的应用场景。比如修改输入尺寸、类别数量等超参数;或者更改损失函数形式来更好地匹配业务逻辑特点。具体的改动应当参照官方文档说明来进行。 #### 开始训练/推理流程 一旦完成了前期准备工作之后,就可以着手执行实际的训练过程或是直接进入预测阶段了。如果是继续迭代已有模型的话,记得要保存好每次更新后的最佳性能版本以便后续评估对比之用。 ```python results = model(img_path) # 对单张图像做推断 results.print() # 打印检测结果到控制台 results.save() # 将检测结果保存为图片 ``` 这段简单的脚本可用于展示如何调用训练完毕后的YOLOv5实例对新样本实施分类定位分析功能。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值