【即插即用】GAM注意力机制(附源码)

本文介绍了一种新的全局注意力机制,通过在通道和空间维度上增强信息保留与交互,改进深度神经网络在图像分类任务中的性能。实验表明,无论ResNet还是MobileNet,该方法在CIFAR-100和ImageNet-1K数据集上均优于其他注意力机制。
摘要由CSDN通过智能技术生成
论文地址:https://arxiv.org/abs/2112.05561#/
摘要:

为了提升各种计算机视觉任务的性能,已经研究了多种注意力机制。然而,先前的方法忽视了在通道和空间两个层面保留信息的重要性,从而影响了跨维度的交互。因此,我们提出了一种全局注意力机制,它通过减少信息损失并放大全局交互表示,来提升深度神经网络的性能。我们为通道注意力引入了3D置换和多层感知器,并设计了一个卷积空间注意力子模块。在CIFAR-100和ImageNet-1K图像分类任务上评估我们提出的机制时,结果显示,无论是使用ResNet还是轻量级的MobileNet,我们的方法都稳定地优于最近的几种注意力机制。

简而言之,我们设计了一种新的全局注意力机制,它能更好地保留和处理图像在通道和空间两个维度的信息,进而提升深度神经网络在图像分类任务上的性能。在多个数据集和模型上的测试都显示,我们的方法比其他注意力机制更为出色。

结构图:

Pytorch源码:
import torch.nn as nn
import torch


class GAM_Attention(nn.Module):
    def __init__(self, in_channels, out_channels, rate=4):
        super(GAM_Attention, self).__init__()

        self.channel_attention = nn.Sequential(
            nn.Linear(in_channels, int(in_channels / rate)),
            nn.ReLU(inplace=True),
            nn.Linear(int(in_channels / rate), in_channels)
        )

        self.spatial_attention = nn.Sequential(
            nn.Conv2d(in_channels, int(in_channels / rate), kernel_size=7, padding=3),
            nn.BatchNorm2d(int(in_channels / rate)),
            nn.ReLU(inplace=True),
            nn.Conv2d(int(in_channels / rate), out_channels, kernel_size=7, padding=3),
            nn.BatchNorm2d(out_channels)
        )

    def forward(self, x):
        b, c, h, w = x.shape
        x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
        x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
        x_channel_att = x_att_permute.permute(0, 3, 1, 2)

        x = x * x_channel_att

        x_spatial_att = self.spatial_attention(x).sigmoid()
        out = x * x_spatial_att

        return out


if __name__ == '__main__':
    x = torch.randn(1, 64, 32, 32)
    b, c, h, w = x.shape
    net = GAM_Attention(in_channels=c, out_channels=c)
    y = net(x)
    print(y.shape)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值